This study experimentally examined the thermal properties of reactive materials that are a composite of fuel and oxidizer particles. Three reactive materials were selected: aluminum (Al) with iron (III) oxide (Fe2O3); Al with Teflon (C2F4); and Al with titanium (IV) oxide (TiO2). The experimental measurements were performed using a laser flash analyzer (LFA) and then compared with calculations based on weighted averages of each component in the composite. The effects of fuel particle size, oxidizer, and initial temperature on thermal properties were studied. Nanometric Al composites are more insulative than their micron-scale counterparts, exhibiting three times lower thermal conductivity in some cases. Increased overall contact resistance may be a key contributor to the reduction in thermal conductivity. The measured values deviated as high as 69% from weighted average estimates of thermal properties. These results suggest that factors not accounted for in weighted average estimates significantly influence the thermal properties of the matrix.

References

1.
Kuo
,
K. K.
,
Hsieh
,
W. H.
,
Hsieh
,
K. C.
, and
Miller
,
M. S.
,
1988
, “
Modeling of Hot Fragment Conductive Ignition of Solid Propellants With Applications to Melting and Evaporation of Solids
,”
ASME J. Heat Transfer
,
110
(
3
), pp.
670
679
.10.1115/1.3250544
2.
Granier
,
J. J.
, and
Pantoya
,
M. L.
,
2004
, “
The Effect of Size Distribution on Burn Rate in Nanocomposite Thermites: A Probability Density Function Study
,”
Combust. Theory Modell.
,
8
(
3
), pp.
555
565
.10.1088/1364-7830/8/3/007
3.
Smith
,
T. F.
,
Byun
,
K.-H.
, and
Chen
,
L.-D.
,
1988
, “
Effects of Radiative and Conductive Transfer on Thermal Ignition
,”
Combust. Flame
,
73
(
1
), pp.
67
74
.10.1016/0010-2180(88)90053-3
4.
Ballas
,
M.
,
Song
,
H.
, and
Ilegbusi
,
O. J.
,
2006
, “
Effect of Thermal Conductivity on Reaction Front Propagation During Combustion Synthesis of Intermetallics
,”
J. Mater. Sci.
,
41
(
13
), pp.
4169
4177
.10.1007/s10853-006-6751-0
5.
Huque
,
Z.
and
Azad
,
G. M. S.
,
2008
, “
Thermal Conductivity Effects on Steady State Propagation Speed During Self-Propagating High-Temperature Synthesis of Ti + C Green Compacts
,”
Mater. Sci. Eng., B
,
147
(
1
), pp.
19
26
.10.1016/j.mseb.2007.10.020
6.
Clancy
,
T. C.
,
Frankland
,
S. J. V.
,
Hinkley
,
J. A.
, and
Gates
,
T. S.
,
2010
, “
Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1555
1560
.10.1016/j.ijthermalsci.2010.05.007
7.
Pantoya
,
M. L.
,
Levitas
,
V. I.
,
Granier
,
J. J.
, and
Henderson
,
J. B.
,
2009
, “
The Effect of Bulk Density on the Reaction Dynamics in Nano and Micron Particulate Thermites
,”
J. Propul. Power
,
25
(
2
), pp.
465
470
.10.2514/1.36436
8.
Walter
,
K. C.
,
Pesiri
,
D. R.
, and
Wilson
,
D. E.
,
2007
, “
Manufacturing and Performance of Nanometric Al/MoO3 Energetic Materials
,”
J. Propul. Power
,
23
(
4
), pp.
645
650
.10.2514/1.25461
9.
Granier
,
J. J.
, and
Pantoya
,
M. L.
,
2004
, “
Laser Ignition of Nanocomposite Thermites
,”
Combust. Flame
,
138
(
4
), pp.
373
383
.10.1016/j.combustflame.2004.05.006
10.
Bourret
,
J.
,
Prud’homme
,
E.
,
Rossignol
,
S.
, and
Smith
,
D. S.
,
2011
, “
Thermal Conductivity of Geomaterial Foams Based on Silica Fume
,”
J. Mater. Sci.
,
47
(
1
), pp.
391
396
.10.1007/s10853-011-5810-3
11.
Poulier
,
C.
,
Smith
,
D. S.
, and
Absi
,
J.
,
2007
, “
Thermal Conductivity of Pressed Powder Compacts: Tin Oxide and Alumina
,”
J. Eur. Ceram. Soc.
,
27
, pp.
474
478
.10.1016/j.jeurceramsoc.2006.04.068
12.
Fayette
,
S.
,
Smith
,
D. S.
,
Smith
,
A.
, and
Martin
,
C.
,
2000
, “
Influence of Grain Size on the Thermal Conductivity of Tin Oxide Ceramics
,”
J. Eur. Ceram. Soc.
,
20
(
3
), pp.
297
302
.10.1016/S0955-2219(99)00171-5
13.
Greedon
,
J. E.
,
1994
, “
Magnetic Oxides
,”
Encyclopedia of Inorganic Chemistry
,
R.
Bruce King
, ed.,
John Wiley & Sons
,
New York
.
14.
Samsonov
,
G. V.
, ed.,
1968
,
Handbook of the Physicochemical Properties of the Elements
,
IFI-Plenum
,
New York
.
15.
Smith
,
W. F.
, and
Hashemi
,
J.
,
2006
,
Foundations of Materials Science and Engineering
, 4th ed.,
McGraw Hill
,
New York
.
16.
Greenwood
,
N. N.
, and
Earnshaw
,
A.
,
1997
,
Chemistry of the Elements
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK.
17.
Koch
,
E.-C.
,
2002
, “
Metal-Fluorocarbon Pyrolants: III. Development and Application of Magnesium/Teflon/Viton
,”
Propellants, Explos., Pyrotech.
,
27
, pp.
262
266
.10.1002/1521-4087(200211)27:5<262::AID-PREP262>3.0.CO;2-8
18.
Parker
,
W. J.
,
Jenkins
,
R. J.
,
Butler
,
C. P.
, and
Abbot
,
G. L.
,
1961
,
J. Appl. Phys.
,
32
, pp.
1679
1686
.10.1063/1.1728417
19.
Carslaw
,
H. S.
, and
Jaegar
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Oxford University Press
,
Oxford
, p.
101
.
20.
Conway
,
J. H.
, and
Sloane
,
N. J.
,
1993
,
Sphere Packings, Lattices and Groups
, 2nd ed.,
Springer-Verlag
,
New York
.
21.
Plantier
,
K. B.
,
Pantoya
,
M. L.
, and
Gash
,
A. E.
,
2005
, “
Combustion Wave Speeds of Nanocomposite Al/Fe2O3: The Effects of Fe2O3 Particle Synthesis Technique
,”
Combust. Flame
,
140
(
4
), pp.
299
309
.10.1016/j.combustflame.2004.10.009
22.
Carbonell
,
R. G.
, and
Whitaker
,
S.
,
1984
, “
Heat and Mass Transfer in Porous Media
,”
Fundamentals of Transport Phenomena in Porous Media
,
J.
Bear
and
M. Y.
Corapcioglu
, eds.,
Martinus Nijhoff Publishers
,
Dordrecht
, pp.
121
198
.
You do not currently have access to this content.