3D numerical results are presented to compare the heat transfer augmentation from a plate by using pin fins and metal foams. It is observed that maximizing the inlet velocity and pores per inch maximizes the overall heat transfer rate. The thickness of the foam layer has minimal effect on overall rates of heat transfer, but great effect on the maximum plate temperature. It has been shown that an optimum thickness exists which minimizes the hot spot temperature. Hot spots are generally located in the corners where velocities are the lowest. While the pressure drop remains almost unaltered, the heat transfer increases by 146% and 12% compared with a smooth channel and the optimal pin-fin data available in the literature, respectively. Interestingly, the additional mass of the foams, to achieve this performance, is approximately one-quarter of the best pin-fin sink quoted above.

References

1.
Bunker
,
R. S.
,
2008
, “
The Augmentation of Internal Blade Tip-Cap Cooling by Arrays of Shaped Pins
,”
ASME J. Turbomach.
,
130
(
4
), p.
041007
.10.1115/1.2812333
2.
Xie
,
G.
,
Sunden
,
B.
,
Wang
,
L.
, and
Utriainen
,
E.
,
2009
, “
Enhanced Internal Heat Transfer on the Tip-Wall in a Rectangular Two-Pass Channel
(AR=1:2) by Pin-Fin Arrays,”
Numer. Heat Transfer, Part A
,
55
(
8
), pp.
739
761
.10.1080/10407780902864680
3.
Ejlali
,
A.
,
Ejlali
,
A.
,
Hooman
,
K.
, and
Gurgenci
,
H.
,
2009
, “
Application of High Porosity Metal Foams as Air-Cooled Heat Exchangers to High Heat Load Removal Systems
,”
Int. Comm. Heat Mass Transfer
,
36
(
7
), pp.
674
679
.10.1016/j.icheatmasstransfer.2009.03.001
4.
Odabaee
,
M.
,
Hooman
,
K.
, and
Gurgenci
,
H.
,
2010
, “
Metal Foam Heat Exchangers for Heat Transfer Augmentation From a Cylinder in Cross-flow
,”
Transp. Porous Media
,
86
,
911
923
.10.1007/s11242-010-9664-y
5.
De Jaeger
,
P.
,
T'Joen
,
C.
,
Huisseune
,
H.
,
Ameel
,
B.
, and
De Paepe
,
M.
,
2011
, “
An Experimentally Validated and Parameterized Periodic Unit-Cell Reconstruction of Open-Cell Foams
,”
J. Appl. Phys.
,
109
(
10
), p.
103519
.10.1063/1.3587159
6.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
7.
Tamayol
,
A.
, and
Hooman
,
K.
,
2011
, “
Thermal Assessment of Forced Convection Through Metal Foam Heat Exchangers
,”
ASME J. Heat Transfer
,
133
(
11
), p.
111801
.10.1115/1.4004530
8.
Wilcox
,
D. C.
,
2006
,
Turbulence Modelling for CFD
, 3rd ed.,
Birmingham Press, San Diego
,
CA
.
9.
Hooman
,
K.
, and
Gurgenci
,
H.
,
2010
, “
Porous Medium Modeling of Air-Cooled Condensers
,”
Transp. Porous Media
,
84
, pp.
257
273
.10.1007/s11242-009-9497-8
10.
Kim
,
S. Y.
, and
Kuznetsov
,
A. V.
,
2003
, “
Optimization of Pin-Fin Heat Sinks Using Anisotropic Local Thermal Nonequilibrium Porous Model in a Jet Impinging Channel
,”
Numer. Heat Transfer, Part A
,
44
, pp.
771
787
.10.1080/716100528
11.
Odabaee
,
M.
, and
Hooman
K.
,
2012
, “
Metal Foam Heat Exchangers for Heat Transfer Augmentation From a Tube Bank
,”
Appl. Therm. Eng.
,
36
, pp.
456
463
.10.1016/j.applthermaleng.2011.10.063
12.
Hooman
,
K.
,
Tamayol
,
A.
, and
Malayeri
,
M. R.
,
2012
, “
Impact of Particulate Deposition on the Thermohydraulic Performance of Metal Foam Heat Exchangers: A Simplified Theoretical Model
,”
ASME J. Heat Transfer
,
134
(
9
), p.
092601
.10.1115/1.4006272
You do not currently have access to this content.