The solution for dynamic modeling of reheating furnaces requires a burner model, which is simultaneously accurate and fast. Based on the fact that radiative heat transfer is the most dominant heat transfer mode in high-temperature processes, the present study develops a simplified flame representation model that can be used for dynamic simulation of heat transfer in reheating furnaces. The first part of the paper investigates, experimentally and computationally, gas combustion in an industrial burner. Experiments aim at establishing an experimental database of the burner characteristics. This database is compared with numerical simulations in order to establish a numerical model for the burner. The numerical burner model was solved using a commercial computational fluid dynamics (CFD) software (FLUENT 6.3.26). A selection of results is presented, highlighting the usefulness of CFD as a modeling tool for industrial scale burners. In the second part of the paper, a new approach called the “emissive volume approach” is established. This approach consists of replacing the burner flame by a number of emissive volumes that replicates the radiative effect of the flame. Comparisons with CFD results show a difference smaller than 1% is achieved with the emissive volume approach, while computational time is divided by 40.

References

1.
Baukal
,
C. E.
, Jr., and
Gershtein
,
V. Y.
, and
Li
,
X.
, eds.,
2001
,
Computational Fluid Dynamics in Industrial Combustion
,
CRC Press
, Boca Raton, FL, p.
630
.
2.
Ishii
,
T.
,
Zhang
,
C.
, and
Sugiyama
,
S.
,
1998
, “
Numerical Simulations of Highly Preheated Air Combustion in an Industrial Furnace
,”
ASME J. Energy Resour. Technol.
,
120
, pp.
276
284
.10.1115/1.2795048
3.
Zhang
,
C.
,
Ishii
,
T.
,
Hino
,
Y.
, and
Sugiyama
,
S.
,
2000
, “
The Numerical and Experimental Study of Non-Premixed Combustion Flames in Regenerative Furnaces
,”
ASME J. Heat Transfer
,
122
, pp.
287
293
10.1115/1.521466.
4.
Yang
,
W.
, and
Blasiak
,
W.
,
2005
, “
Numerical Simulation of Properties of a LPG Flame With High-Temperature Air
,”
Int. J. Therm. Sci.
, pp.
973
985
.10.1016/j.ijthermalsci.2005.03.001
5.
Abdo
,
D.
,
2006
, “
Modélisation dynamique et supervision des fours de réchauffage continues de la siderurgie
,” Ph.D. thesis,
Ecole des Mines de Paris
,
Paris
.
6.
El Hitti
,
G.
,
Nemer
,
M.
, and
El Khoury
,
K.
,
2010
, “
Transient Radiation and Conduction Heat Transfer in Glass Sheets by the Thin Approximation
,”
ASME J. Heat Transfer
,
132
, p.
023506
.10.1115/1.4000228
7.
El Hitti
,
G.
,
Nemer
,
M.
,
El Khoury
,
K.
, and
Clodic
,
D.
,
2010
, “
The Re-Plating Algorithm for Radiation Total Exchange Area Calculation
,”
Numer. Heat Transfer, Part B
,
57
(2), pp.
110
125
.10.1080/10407791003613744
8.
Howell
,
H. C.
,
1988
, “
Thermal Radiation in Participating Media: The Past, the Present, and Some Possible Future
,”
ASME J. Heat Transfer
,
110
, pp.
1220
1229
.10.1115/1.3250622
9.
Hottel
,
H. C.
, and
Cohen
,
E. S.
,
1958
, “
Radiant Heat Exchange in a Gas Filled Enclosure: Allowance for Non-Uniformity in Temperature
,”
Am. Inst. Chem. Eng. J.
,
4
, pp.
3
14
.10.1002/aic.690040103
10.
Hottel
,
H. C.
, and
Sarofim
,
A. F.
,
1967
,
Radiative Transfer
,
McGraw-Hill
,
New York
.
11.
Steward
,
F. R.
, and
Cannon
,
P.
,
1971
, “
The Calculation of Radiative Heat Flux in a Cylindrical Furnace Using the Monte Carlo Model
,”
Int. J. Heat Mass Transfer
,
14
, pp.
245
262
.10.1016/0017-9310(71)90092-5
12.
Wu
,
H. L.
, and
Fricker
,
N.
,
1971
, “
An Investigation of the Behavior Swirling Jet Flames in a Narrow Cylindrical Furnace
,”
2nd Members Conference Industrial Flames Research Foundation
,
Ijmuiden
,
The Netherlands
.
13.
Heap
,
M. P.
,
Bartelds
,
H.
,
Lowes
,
T. M.
,
Michelfelder
,
S.
, and
Pai
,
B. R.
,
1974
, “
Prediction of Radiant Heat Flux Distribution
,”
Heat Transfer in Flames
,
N. H.
Afgan
and
J. M.
Beer
, eds.,
Scripta Book Co
,
Washington, DC.
14.
Quinqueneau
,
A. F.
,
Minquel
,
P. M.
,
Dearden
,
L.
,
Pourkashnian
,
M.
,
Spence
,
G. T.
,
Williams
,
A.
, and
Wills
,
B. J.
,
1998
, “
Experimental and Theoretical Investigation of a Low-Nox High Temperature Industrial Burner
,”
International Gas Research Conference
, pp.
225
236
.
15.
Howell
,
J. R.
, and
Perlmutter
,
M.
,
1964
, “
Monte Carlo Solution of Thermal Transfer Through Radiant Media Between Gray Walls
,”
ASME J. Heat Transfer
,
86
, pp.
116
122
.10.1115/1.3687044
16.
Jeans
,
J. H.
,
1917
, “
The Equations of Radiative Transfer of Energy
,”
Mon. Not. R. Astrom. Soc.
,
78
, pp.
28
36
.
17.
Selçuk
,
N.
,
Siddal
,
R. G.
, and
Beer
,
J. M.
,
1976
, “
A Comparison of Mathematical Models of the Radiative Behavior of a Large-Scale Experimental Furnace
,”
16th Symp. International on Combustion
, p.
53
18.
Piepers
,
O.
,
Breithaup
,
P. P.
, and
Van Beelen
,
A. B. N.
,
2001
, “
Stability of Flames Close to Auto-Ignition Temperatures Generated by Extreme Separated Gas-Air Inlets
,”
ASME J. Energy Resour. Technol.
,
123
, pp.
50
58
.10.1115/1.1345731
19.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1977
, “
On Mathematical Modelling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
16th Symposium (Int) on Combustion, The Combustion Institute
, pp.
719
729
.
20.
Bollettini
,
U.
,
Mancini
,
M.
,
Orsino
,
S.
, and
Weber.
F.
,
2001
, “
Simulation of Natural Gas Combustion in High Temperature Air for an Industrial Burner
,”
4th Symposium on High Temperature Air Combustion and Gasification, Rome
.
21.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
22.
Wieringa
,
J. A.
,
1992
, “
Spectral Radiative Heat Transfer is Gas-Fired Furnaces
,” Doctoral thesis,
Delft University of Technologie
, Delft, South Holland, The Netherlands, p.
183
.
23.
Uede
,
M.
,
Shimada
,
T.
, and
Imada
,
M.
,
1999
, “
Simulation of Regenerative Burner System and Its Application to Walking Beam Reheat Furnaces
,”
Iron Steel Eng.
,
76
, pp.
68
71
.
24.
Weber
,
R.
,
Orsino
,
S.
,
Lallemant
,
N.
, and
Verlaan
,
A. D.
,
2000
, “
Combustion of Natural Gas With High-Temperature Air and Large Quantities of Flue Gas
,”
28th Symposium International on Combustion, the Combustion Institute
, pp.
1315
1321
.
25.
Pesenti
,
B.
,
Evrard
,
P.
, and
Lybaert
,
P.
,
2001
, “
NOx Production and Radiative Heat Transfer From an Autoregenerative Flameless Oxidation Burner
,”
4th Symposium on High Temperature Air Combustion and Gasification, Rome
.
26.
Coelho
,
P. J.
, and
Peters
,
N.
,
2001
, “
Numerical Simulation of a Mild Combustion Burner
,”
Combust. Flame
,
124
, pp.
503
518
.10.1016/S0010-2180(00)00206-6
27.
Coelho
,
P. J.
, and
Carvalho
,
M. G.
,
1997
, “
A Conservation Formulation of the Discrete Transfer Method
,”
ASME J. Heat Transfer
,
119
, pp.
118
128
.10.1115/1.2824076
28.
Ferrand
,
L.
,
2003
, “
Modélisation et expérimentation des fours de réchauffage sidérurgiques équipés de brûleur régénératifs à Oxydation sans Flamme
,” Ph.D. thesis,
Ecole des Mines de Paris
,
Paris
.
29.
Smith
,
T. F.
,
Shen
,
Z. F.
, and
Friedman
,
J. N.
,
1982
, “
Evaluation of Coefficients for the Weighted Sum of Gray Gases Mode
l,”
ASME J. Heat Transfer
,
104
, pp.
602
608
.10.1115/1.3245174
30.
Soufiani
A.
, and
Djavdan
,
E.
,
1994
, “
A Comparison Between Weighted Sum of Grey Gases and Statistical Narrow-Band Radiation Models for Combustion Applications
,”
Combust. Flame
,
97
, pp.
240
250
.10.1016/0010-2180(94)90007-8
31.
Mancini
,
M.
,
Weber
,
R.
, and
Bollettini
,
U.
,
2001
, “
Mathematical Models Development for Design of HTAC Systems
,”
4th Symposium on High Temperature Air Combustion and Gasification, Rome
.
32.
Brizuela
,
E. A.
, and
Bilger
,
R. W.
,
1996
, “
On the Eddy Break-Up Coefficient
,”
Combust. Flame
,
104
, pp.
208
212
.10.1016/0010-2180(95)00205-7
33.
Wünning
,
J. A.
, and
Wünning
,
J. G.
,
1997
, “
Flameless Oxidation to Reduce Thermal NO-Formation
,”
Prog. Energy Combust. Sci.
,
23
(
1
), pp.
81
94
.10.1016/S0360-1285(97)00006-3
34.
Lockwood
,
F. C.
, and
Shah
,
N. G.
,
1981
, “
A New Radiation Solution Method for Incorporation in General Combustion Prediction Procedures
,”
18th Symposium International on Combustion, The Combustion Institute
, pp.
1405
1414
.
35.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
, pp.
301
314
.10.1016/0017-9310(72)90076-2
36.
Zhang
,
L.
,
Swinderski
,
A.
,
Nehme
,
W.
,
Yang
,
W.
, and
Blasiak
,
W.
,
2009
, “
Experimental Study of Radiative Heat Transfer and Temperature in High Temperature Air Combustion
,”
10th Conference on Energy for Clean Environment
.
37.
Biswas
,
A. K.
,
Zhang
,
L.
,
Swiderski
,
A.
,
Nehme
,
W.
, and
Yang
,
W.
,
2009
, “
Experimental Investigation of Nitrogen Oxides Emission and Heat Transfer for High Temperature Air Combustion
,”
10th Conference on Energy for Clean Environment
.
You do not currently have access to this content.