The ability to use a magnetic field as a means for controlling the role of gravity buoyancy on the combustion process is demonstrated by applying a strong vertical magnetic field gradient on a laminar gas jet diffusion flame. The confirmation is based on a comparison of flame appearance; in particular, length variation, to both elevated gravity (higher than earth’s gravity) and zero-gravity combustion experimental data. The comparison parameter is the dimensionless number G, defined as the ratio of gravity level generated by magneto-gravity buoyancy to earth’s gravity. The more important results are as follows. First, for G > 1, good agreement between magnetic and centrifuge length scaling laws reveals that the slight decrease of flame length according to L ∼ G−1/8 is the result of increasing artificial magnetically induced gravity strength. It ensues that flame thinning, bluing, lifting, and extinction are produced by similar mechanisms previously identified in centrifuge diffusion flames. Thereafter, at G ≅ 0, the flame assumes a nearly hemispheric shape and a blue color in perfect similarity to nonbuoyant flames under zero-gravity conditions generated in drop towers. Another important fact is that the magnetic field offers the ability to observe the flame behavior at low gravity levels 0 < G < 1. A primary interesting result is that flame length varies strongly, following the scaling law L ∼ G−1/2.

References

1.
Altenkirch
,
R. A.
,
Eichhorn
,
R.
,
Hsu
,
N. N.
,
Brancic
,
A. B.
, and
Cevallos
,
N. E.
, 1977, “
Characteristics of Laminar Gas Jet Diffusion Flames Under the Influence of Elevated Gravity
,”
Symposium (International) on Combustion
,
16
(
1
), pp.
1165
1174
.
2.
Sato
,
H.
,
Amagai
,
K.
, and
Arai
,
M.
, 2000, “
Diffusion Flames and Their Flickering Motions Related With Froude Numbers Under Various Gravity Levels
,”
Combust. Flame
,
123
, pp.
107
118
.
3.
Durox
,
D.
,
Yuan
,
T.
,
Baillot
,
F.
, and
Most
,
J. M.
, 1995, “
Premixed and Diffusion Flames in a Centrifuge
,”
Combust. Flame
,
102
, pp.
501
511
.
4.
Cochran
,
T. H.
, and
Masica
,
W. J.
, 1971, “
An Investigation of Gravity Effects on Laminar Gas Jet Diffusion Flames
,”
Symposium (International) on Combustion
,
13
(
1
), pp.
821
829
.
5.
Sunderland
,
P. B.
,
Mortazavi
,
S.
,
Faeth
,
G. M.
, and
Urbain
,
D. L.
, 1994, “
Laminar Smoke Points of Nonbuoyant Jet Diffusion Flames
,”
Combust. Flame
,
96
, pp.
97
103
.
6.
Urban
,
D. L.
,
Yuan
,
Z.-G.
,
Sunderland
,
P. B.
,
Linteris
,
G. T.
,
Voss
,
J. E.
,
Lin
,
K.-C.
,
Dai
,
Z.
,
Sun
,
K.
, and
Faeth
,
G. M.
, 1998, “
Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames
,”
AIAA J.
,
36
, pp.
1346
1360
.
7.
Lin
,
K.-C.
,
Faeth
,
G. M.
,
Sunderland
,
P. B.
,
Urban
,
D. L.
, and
Yuan
,
Z.-G.
, 1999, “
Shapes of Nonbuoyant Round Luminous Hydrocarbon/air Laminar-Jet Diffusion Flames
,”
Combust. Flame
,
116
, pp.
415
431
.
8.
Sunderland
,
P. B.
,
Mendelson
,
B. J.
,
Yuang
,
Z. G.
, and
Urban
,
D. L.
, 1999, “
Shapes of Buoyant and Nonbuoyant Laminar Jet Diffusion Flames
,”
Combust. Flame
,
116
, pp.
376
386
.
9.
Sunderland
,
P. B.
,
Haylett
,
J. E.
,
Urban
,
D. L.
, and
Nayagam
,
V.
, 2008, “
Lengths of Laminar Jet Diffusion Flames Under Elevated Gravity
,”
Combust. Flame
,
152
, pp.
60
68
.
10.
Aoki
,
T.
, 1989, “
Radicals’ Emissions and Butane Diffusion Flames Exposed to Upward-Decreasing Magnetic Fields
,”
Jpn. J. Appl. Phys.
,
28
(
5
), pp.
776
785
.
11.
Aoki
,
T.
, 1990, “
Radicals Emissions and Anomalous Reverse Flames Appearing in Upward-Increasing Magnetic Fields
,”
Jpn. J. Appl. Phys.
,
29
(
1
), pp.
181
190
.
12.
Wakayama
,
N. I.
, 1993, “
Magnetic Promotion of Combustion in Diffusion Flames
,”
Combust. Flame
,
93
, pp.
207
214
.
13.
Fujita
,
O.
,
Ito
,
K.
,
Chida
,
T.
,
Nagai
,
S.
, and
Takeshita
,
Y.
, 1998, “
Determination of Magnetic Field Effects on a Jet Diffusion Flame in a Microgravity Environment
,”
Symposium (International) on Combustion
,
27
(
2
), pp.
2573
2578
.
14.
Baker
,
J.
, and
Calvert
,
M. E.
, 2003, “
A Study of the Characteristics of Slotted Laminar Jet Diffusion Flames in the Presence of Non Uniform Magnetic Fields
,”
Combust. Flame
,
133
, pp.
345
357
.
15.
Braithwaite
,
D.
,
Beaugnon
,
E.
, and
Tournier
,
R.
, 1991, “
Magnetically Controlled Convection in a Paramagnetic Fluid
,”
Nature (London)
,
354
, pp.
7
8
.
16.
Seybert
,
C. D.
,
Evans
,
J. W.
,
Lesie
,
F.
, and
Jones
,
W. K.
, Jr
, 2000, “
Suppression/Reversal of Natural Convection by Exploiting the Temperature Composition Dependence of Magnetic Susceptibility
,”
J. Appl. Phys.
,
88
(
7
), pp.
4347
4351
.
17.
Maki
,
S.
,
Tagawa
,
T.
, and
Ozoe
,
H.
, 2002, “
Enhanced Convection or Quasi-Conduction States Measured in a Super-Conducting Magnet for Air in a Vertical Cylindrical Enclosure Heated From Below and Cooled From Above in a Gravity Field
,”
ASME J. Heat Transfer
,
124
, pp.
667
673
.
18.
Khaldi
,
F.
,
Noudem
,
J.
, and
Gillon
,
P.
, 2005, “
On the Similarity Between Gravity and Magneto-Gravity Convection Within a Non-Electroconducting Fluid in a Differentially Heated Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
48
(
7
), pp.
1350
1360
.
19.
Klimek
,
R.
, and
Wright
,
T.
, 2003, SPOTLIGHT 2.0: Image Analysis Software, NASA, http://microgravity.grc.nasa.gov/spotlight
20.
Zhang
,
X. Q.
,
Du
,
W. F.
,
Wei
,
M. G.
,
Kong
,
W. J.
, and
Hua
,
Y
, 1999, “
A Study of Candle Flame in Microgravity
,”
Microgravity Combustion Workshop
,
Cleveland
,
OH
, pp.
18
20
.
21.
T’ien
,
J. S.
, 2000, “
The Role of Radiation on Microgravity Flames
,”
8th International Conference on Numerical Combustion
,
Amelia Island, FL
, pp.
5
8
.
You do not currently have access to this content.