In this paper, the phonon scattering mechanisms of single-layer graphene are investigated based on the complete phonon dispersion relations. According to the selection rules that a phonon scattering process should obey the energy and momentum conservation conditions, the relaxation rates of combining and splitting umklapp processes can be calculated by integrating the intersection lines between different phonon mode surfaces in the phonon dispersion relation space. The dependence of the relaxation rates on the wave vector directions is presented with a three-dimensional surface over the first Brillouin zone. It is found that the reason for the optical phonons contributing little to heat transfer is attributed to the strong umklapp processes but not to their low phonon group velocities. The combining umklapp scattering processes involving the optical phonons mainly decrease the acoustic phonon thermal conductivity, while the splitting umklapp scattering processes of the optical phonons mainly restrict heat conduction by the optical phonons themselves. Neglecting the splitting processes, the optical phonons can contribute more energy than that carried by the acoustic phonons. Based on the calculated phonon relaxation time, the thermal conductivities contributed from different mode phonons can be evaluated. At low temperatures, both longitudinal and in-plane transverse acoustic phonon thermal conductivities have T2 temperature dependence, and the out-of-plane transverse acoustic phonon thermal conductivity is proportion to T3/2. The calculated thermal conductivity is on the order of a few thousands W/(m K) at room temperature, depending on the sample size and the edge roughness, and is in agreement well with the recently measured data in the temperature range from about 350 K to 500 K.

References

1.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
2004, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
, pp.
666
669
.
2.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
, 2008, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
,
8
(
3
), pp.
902
907
.
3.
Ghosh
,
S.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Pokatilov
,
E. P.
,
Nika
,
D. L.
,
Balandin
,
A. A.
,
Bao
,
W.
,
Miao
,
F.
, and
Lau
,
C. N.
, 2008, “
Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits
,”
Appl. Phys. Lett.
,
92
(
15
), p.
151911
.
4.
Faugeras
,
C.
,
Faugeras
,
B.
,
Orlita
,
M.
,
Potemski
,
M.
,
Nair
,
R. R.
, and
Geim
,
A. K.
, 2010, “
Thermal Conductivity of Graphene in Corbino Membrane Geometry
,”
ACS Nano
,
4
(
4
), pp.
1889
1892
.
5.
Chen
,
S.
,
Moore
,
A. L.
,
Cai
,
W.
,
Suk
,
J. W.
,
An
,
J.
,
Mishra
,
C.
,
Amos
,
C.
,
Magnuson
,
C. W.
,
Kang
,
J.
,
Shi
,
L.
, and
Ruoff
,
R. S.
, 2011, “
Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments
,”
ACS Nano
,
5
(
1
), pp.
321
328
.
6.
Lee
,
J.-U.
,
Yoon
,
D.
,
Kim
,
H.
,
Lee
,
S. W.
, and
Cheong
,
H.
, 2011, “
Thermal Conductivity of Suspended Pristine Graphene Measured by Raman Spectroscopy
,”
Phys. Rev. B
,
83
(
8
), p.
081419
.
7.
Cai
,
W.
,
Moore
,
A. L.
,
Zhu
,
Y.
,
Li
,
X.
,
Chen
,
S.
,
Shi
,
L.
, and
Ruoff
,
R. S.
, 2010, “
Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition
,”
Nano Lett.
,
10
(
5
), pp.
1645
1651
.
8.
Seol
,
J. H.
,
Jo
,
I.
,
Moore
,
A. L.
,
Lindsay
,
L.
,
Aitken
,
Z. H.
,
Pettes
,
M. T.
,
Li
,
X.
,
Yao
,
Z.
,
Huang
,
R.
,
Broido
,
D.
,
Mingo
,
N.
,
Ruoff
,
R. S.
, and
Shi
,
L.
, 2010, “
Two-Dimensional Phonon Transport in Supported Graphene
,”
Science
,
328
(
5975
), pp.
213
216
.
9.
Murali
,
R.
,
Yang
,
Y.
,
Brenner
,
K.
,
Beck
,
T.
, and
Meindl
,
J. D.
, 2009, “
Breakdown Current Density of Graphene Nanoribbons
,”
Appl. Phys. Lett.
,
94
(
24
), p.
243114
.
10.
Klemens
,
P. G.
, and
Pedraza
,
D. F.
, 1994, “
Thermal Conductivity of Graphite in the Basal Plane
,”
Carbon
,
32
(
4
), pp.
735
741
.
11.
Klemens
,
P. G.
, 2005,
Thermal Conductivity 26: Thermal Expansion 14
,
Destech Publications, Inc.
,
Lancaster
, Vol.
26
, p.
47
.
12.
Nika
,
D. L.
,
Pokatilov
,
E. P.
,
Askerov
,
A. S.
, and
Balandin
,
A. A.
, 2009, “
Phonon Thermal Conduction in Graphene: Role of Umklapp and Edge Roughness Scattering
,”
Phys. Rev. B
,
79
(
15
), p.
155413
.
13.
Mounet
,
N.
, and
Marzari
,
N.
, 2005, “
First-Principles Determination of the Structural, Vibrational and Thermodynamic Properties of Diamond, Graphite, and Derivatives
,”
Phys. Rev. B
,
71
(
20
), p.
205214
.
14.
Nika
,
D. L.
,
Ghosh
,
S.
,
Pokatilov
,
E. P.
, and
Balandin
,
A. A.
, 2009, “
Lattice Thermal Conductivity of Graphene Flakes: Comparison With Bulk Graphite
,”
Appl. Phys. Lett.
,
94
(
20
), p.
203103
.
15.
Lindsay
,
L.
,
Broido
,
D. A.
, and
Mingo
,
N.
, 2010, “
Diameter Dependence of Carbon Nanotube Thermal Conductivity and Extension to the Graphene Limit
,”
Phys. Rev. B
,
82
(
16
), p.
161402
.
16.
Lindsay
,
L.
,
Broido
,
D. A.
, and
Mingo
,
N.
, 2010, “
Flexural Phonons and Thermal Transport in Graphene
,”
Phys. Rev. B
,
82
(
11
), p.
115427
.
17.
Chantrenne
,
P.
, and
Barrat
,
J.-L.
, 2004, “
Analytical Model for the Thermal Conductivity of Nanostructures
,”
Superlattices Microstruct.
,
35
, pp.
173
186
.
18.
Han
,
Y.-J.
, and
Klemens
,
P. G.
, 1993, “
Anharmonic Thermal Resistivity of Dielectric Crystals at Low Temperatures
,”
Phys. Rev. B
,
48
, pp.
6033
6042
.
19.
Klemens
,
P. G.
, 1967, “
Decay of High-Frequency Longitudinal Phonons
,”
J. Appl. Phys.
,
38
, pp.
4573
4576
.
20.
Saito
,
R.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
, 1998,
Physical Properties of Carbon Nanotubes
,
Imperial College Press
,
London
.
21.
Gu
,
Y.
, and
Chen
,
Y.
, 2007, “
Thermal Conductivities of Single-Walled Carbon Nanotubes Calculated From the Complete Phonon Dispersion Relations
,”
Phys. Rev. B
,
76
(
13
), p.
134110
.
22.
Roufosse
,
M.
, and
Klemens
,
P. G.
, 1973, “
Thermal Conductivity of Complex Dielectric Crystals
,”
Phys. Rev. B
,
7
, pp.
5379
5386
.
23.
Ziman
,
J. M.
, 1960,
Electrons and Phonons
,
Clarendon
,
Oxford
.
24.
Huang
,
M. J.
,
Chang
,
T. M.
,
Chong
,
W. Y.
,
Liu
,
C. K.
, and
Yu
,
C. K.
, 2007, “
A New Lattice Thermal Conductivity Model of a Thin-Film Semiconductor
,”
Int. J. Heat Mass Transfer.
,
50
(
1–2
), pp.
67
74
.
25.
Lacroix
,
D.
,
Traore
,
I.
,
Fumeron
,
S.
, and
Jeandel
,
G.
, 2009, “
Phonon Transport in Silicon, Influence of the Dispersion Properties Choice on the Description of the Anharmonic Resistive Mechanisms
,”
Eur. Phys. J. B
,
67
(
36
), pp.
15
25
.
26.
Kong
,
B. D.
,
Paul
,
S.
,
Nardelli
,
M. B.
, and
Kim
,
K. W.
, 2009, “
First-Principles Analysis of Lattice Thermal Conductivity in Monolayer and Bilayer Graphene
,”
Phys. Rev. B
,
80
(
3
), p.
033406
.
27.
Cheng
,
Y. C.
,
Zhu
,
Z. Y.
,
Huang
,
G. S.
, and
Schwingenschlogl
,
U.
, 2011, “
Gruneisen Parameter of the G Mode of Strained Monolayer Graphene
,”
Phys. Rev. B
,
83
(
11
), p.
115449
.
28.
Mingo
,
N.
, and
Broido
,
D. A.
, 2005, “
Carbon Nanotube Ballistic Thermal Conductance and Its Limits
,”
Phys. Rev. Lett.
,
95
, p.
096105
.
29.
Wang
,
Z.
,
Xie
,
R.
,
Bui
,
C. T.
,
Liu
,
D.
,
Ni
,
X.
,
Li
,
B.
, and
Thong
,
J. T. L.
, 2011, “
Thermal Transport in Suspended and Supported Few-Layer Graphene
,”
Nano Lett.
,
11
(
1
), pp.
113
118
.
You do not currently have access to this content.