A thermal spray coating process was used to deposit dense 2 mm thick metal skins on the surfaces of square cross-section channels (300 mm × 20 mm × 20 mm) of nickel and copper foams with 10 and 40 PPI (pores per inch) pore densities. A heater was wrapped around the channels to apply surface heat-fluxes varying from 427 to 6846 W/m2. Compressed air was blown through the channels at flow rates of 5–80 l/min. Foam and fluid temperature distributions along the length of the channel and the pressure drop across it were measured. The foam was modeled as a porous medium and properties such as permeability K and inertial coefficient CF were determined from the experimental data. Local and average convective heat transfer coefficients were calculated from air and foam temperature measurements. Nusselt numbers were calculated and correlated in terms of the Reynolds, Prandtl, and Darcy numbers. Heat transfer to air flowing through a 10 PPI foam channel was shown to have increased nearly seven times compared to that of hollow tube with the same dimensions.

References

1.
Banhart
,
J.
, 2002, “
Manufacture, Characterization and Application of Cellular Metals and Metal Foams
,”
Prog. Mater. Sci.
,
46
, pp.
559
632
.
2.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
, 2003, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
, pp.
1161
1176
.
3.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
, pp.
557
565
.
4.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
, 2002, “
Measurement of Interstitial Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
,
124
, pp.
120
129
.
5.
Hsieh
,
W. H.
,
Wu
,
J. Y.
,
Shih
,
W. H.
, and
Chiu
,
W. C.
, 2004, “
Experimental Investigation of Heat-Transfer Characteristics of Aluminum-Foam Heat Sink
,”
Int. J. Heat Mass Transfer
,
47
, pp.
5149
5157
.
6.
Kim
,
S. Y.
,
Kang
,
B. H.
, and
Kim
,
J. H.
, 2001, “
Forced Convection From Aluminum Foam Materials in an Asymmetrically Heated Channel
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1451
1454
.
7.
Tian
,
J.
,
Kim
,
T.
,
Lu
,
T. J.
,
Hodson
,
H. P.
,
Queheillalt
,
D. T.
,
Sypeck
,
D. J.
, and
Wadley
,
H. N.
, 2004, “
The Effect of Topology Upon Fluid-Flow and Heat-Transfer Within Cellular Copper Structures
,”
Int. J. Heat Mass Transfer
,
47
, pp.
3171
3186
.
8.
Bastawros
,
A. F.
, 1998, “
Effectiveness of Open-Cell Metallic Foams for High Power Electronic Cooling
,”
Proceeding Symposium on the Thermal Management of Electronics
,
IMECE
,
Anaheim, CA.
9.
Boomsma
,
K.
, and
Poulikakos
,
D.
, 2002, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
, pp.
263
272
.
10.
Boomsma
,
K.
, and
Poulikakos
,
D.
, 2001, “
On the Effective Thermal Conductivity of a Three Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
44
, pp.
827
836
.
11.
Salimi Jazi
,
H. R.
,
Mostaghimi
,
J.
,
Chandra
,
S.
,
Pershin
,
L.
, and
Coyle
,
T.
, 2009, “
Spray-Formed, Metal-Foam Heat Exchangers for High Temperature Applications
,”
ASME J. Thermal Sci. Eng. Appl.
,
1
, p.
031008
.
12.
Salas
,
K. I.
, and
Wass
,
A. M.
, 2007, “
Convective Heat Transfer in Open Cell Metal Foams
,”
ASME J. Heat Transfer
,
129
, pp.
1217
1229
.
13.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1017
1031
.
14.
Lu
,
T. J.
,
Stone
,
A. H.
, and
Ashby
,
M. F.
, 1998, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
, pp.
3619
3635
.
15.
Giani
,
L.
,
Groppi
,
G.
, and
Tronconi
,
E.
, 2005, “
Heat Transfer Characterization of Metallic Foams
,”
Ind. Eng. Chem. Res.
,
44
, pp.
9078
9085
.
16.
Ward
,
J. C.
, 1964, “
Turbulent Flow in Porous Media
,”
J. Hydr. Div., Proc. Am. Soc. Civ. Eng.
,
90
, pp.
1
12
.
17.
Lage
,
J. L.
, 1998, “
The Fundamental and Theory of Flow Through Permeable Media From Darcy to Turbulence
,”
Transport Phenomena in Porous Media
,
B.
Ingham
and
I.
Pop
, eds.,
Elsevier Science
,
Oxford, United Kingdom
, pp.
1
30
.
18.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
, 2nd ed.,
Springer-Verlag
,
New York.
19.
Diedericks
,
D. P. J.
, and
Du Plessis
,
J. P.
, 1997, “
Modelling Modeling of Flow Through Homogeneous Foams
,”
Math. Eng. Ind.
,
6
, pp.
133
154
.
20.
Vafai
,
K.
, 2005,
Handbook in Porous Media
, 2nd ed.,
Taylor and Francis Group/CRC Press
,
Boca Raton, FL.
21.
Beavers
,
G. S.
, and
Sparrow
,
E. M.
, 1969, “
Non-Darcy Flow Through Fibrous Porous Media
,”
ASME J. Appl. Mech.
,
36
, pp.
711
714
.
22.
Noh
,
J. S.
,
Lee
,
K. B.
, and
Lee
,
C. G.
, 2006, “
Pressure Loss and Forced Convective Heat Transfer in an Annulus Filled With Aluminum Foam
,”
Int. Commun. Heat Mass Transfer
,
33
, pp.
434
444
.
23.
Bejan
,
A.
, 1995,
Convection Heat Transfer
,
John Wiley & Sons
,
New York
.
24.
Younis
,
L. B.
, and
Viskanta
,
R.
, 1993, “
Experimental Determination of the Volumetric Heat Transfer Coefficient Between a Stream of Air and Ceramic Foam
,”
Int. J. Heat Mass Transfer
,
36
, pp.
1425
1434
.
25.
Kurtbas
,
I.
, and
Celik
,
N.
, 2009, “
Experimental Investigation of Forced and Mixed Convection Heat Transfer in a Foam-Filled Horizontal Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1313
1325
.
26.
Fuller
,
A. J.
,
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
, 2004, “
Measurement and Interpretation of the Heat Transfer Coefficients of Metal Foams
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
219
, pp.
183
191
.
27.
Çengel
,
Y. A.
, 2007,
Heat and Mass Transfer: A Practical Approach
,
McGraw-Hill
,
New York
.
28.
Degisher
,
H.
, and
Kriszt
,
B.
, 2002,
Handbook of Cellular Metals: Production, Processing, Applications
,
Wiley-VCH Verlag GmbH
,
Weinheim, Germany
.
29.
Tsolas
,
N.
, 2010, “
Thermal Spray Forming of High-Efficiency Metal-Foam Heat Exchangers
,” M.Sc. thesis, University of Toronto, Toronto.
You do not currently have access to this content.