Highly-conductive nanostructures may be dispersed into phase change materials (PCM) to improve their effective thermal conductivity, thus leading to colloidal systems that are referred to as nanostructure-enhanced PCM (NePCM). Results of a theoretical and experimental investigation on freezing of NePCM in comparison to the base PCM are presented. A one-dimensional Stefan model was developed to study the unidirectional freezing of NePCM in a finite slab. Only the thermal energy equation was considered and the presence of static dispersed nanoparticles was modeled using effective media relations. A combination of analytical and integral methods was used to solve this moving boundary problem. The elapsed time to form a given thickness of frozen layer was therefore predicted numerically. A cooled-from-bottom unidirectional freezing experimental setup was designed, constructed, and tested. Thermocouple readings were recorded at several equally spaced locations along the freezing direction in order to monitor the progress of the freezing front. As an example, cyclohexane (C6H12) and copper oxide (CuO) nanoparticles were chosen to prepare the NePCM samples. The effective thermophysical and transport properties of these samples for various particle loadings (0.5/3.8, 1/7.5, and 2/14.7 vol. %/wt. %) were determined using the mixture and Maxwell models. Due to utilization of the Maxwell model for thermal conductivity of both phases, the numerical predictions showed that the freezing time is shortened linearly with increasing particle loading, whereas nonmonotonic expediting was observed experimentally. The maximum expediting was found to be nearly 8.23% for the 0.5 vol. % sample. In the absence of a nanoparticle transport model, the mismatch of the cold plate boundary conditions, lack of accurate thermophysical properties, especially in the solid phase of NePCM samples and precipitation issues with 2 vol. % samples were addressed by improving the experimental setup. Through adopting a copper cold plate, utilizing measured thermal conductivity data for both phases and using 1, 2, and 4 wt. % samples, good agreement between the experimental and numerical results were realized. Specifically, adoption of measured thermal conductivity values for the solid phase in the Stefan model that were originally underestimated proved to be a major cause of harmony between the experiments and predictions.

References

1.
Fan
,
L.
, and
Khodadadi
,
J. M.
, 2011, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
.
2.
Hoover
,
M. J.
,
Grodzka
,
P. G.
, and
O’Neill
,
M. J.
, 1971, “
Space Thermal Control Development
,”
Huntsville Research and Engineering Center, Lockheed Missiles and Space Company, Inc.
,
Huntsville
,
AL
, Report No. LMSC-HREC D225500.
3.
Siegel
,
R.
, 1977, “
Solidification of Low Conductivity Material Containing Dispersed High Conductivity Particles
,”
Int. J. Heat Mass Transfer
,
20
(
10
), pp.
1087
1089
.
4.
Seeniraj
,
R. V.
,
Velraj
,
R.
, and
Narasimhan
,
N. L.
, 2002, “
Heat Transfer Enhancement Study of a LHTS Unit Containing Dispersed High Conductivity Particles
,”
J. Sol. Energy Eng.
,
124
(
7
), pp.
243
249
.
5.
Mettawee
,
E. -B. S.
, and
Assassa
,
G. M. R.
, 2007, “
Thermal Conductivity Enhancement in a Latent Heat Storage System
,”
Sol. Energy
,
81
(
7
), pp.
839
845
.
6.
Yu
,
W.
,
France
,
D. M.
,
Routbort
,
J. L.
, and
Choi
,
S. U. S.
, 2008, “
Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,”
Heat Transfer Eng.
,
29
(
5
), pp.
432
460
.
7.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Pradeep
,
R.
, 2008,
Nanofluids: Science and Technology
,
John Wiley & Sons, Inc.
,
New York
.
8.
Khodadadi
,
J. M.
, and
Hosseinizadeh
,
S. F.
, 2007, “
Nanoparticle-Enhanced Phase Change Materials (NEPCM) With Great Potential for Improved Thermal Energy Storage
,”
Int. Commun. Heat Mass Transfer
,
34
(
5
), pp.
534
543
.
9.
Zeng
,
J. L.
,
Sun
,
L. X.
,
Xu
,
F.
,
Tan
,
Z. C.
,
Zhang
,
Z. H.
,
Zhang
,
J.
, and
Zhang
,
T.
, 2007, “
Study of a PCM Based Energy Storage System Containing Ag Nanoparticles
,”
J. Therm Anal. Calorim.
,
87
(
2
), pp.
369
373
.
10.
Ho
,
C. J.
, and
Gao
,
J. Y.
, 2009, “
Preparation and Thermophysical Properties of Nanoparticle-in-Paraffin Emulsion as Phase Change Material
,”
Int. Commun. Heat Mass Transfer
,
36
(
15
), pp.
467
470
.
11.
Wang
,
J.
,
Xie
,
H.
,
Li
,
Y.
, and
Xin
,
Z.
, 2010, “
PW Based Phase Change Nanocomposites Containing γ-Al2O3
,”
J. Therm Anal. Calorim.
,
102
(
2
), pp.
709
713
.
12.
Wu
,
S.
,
Zhu
,
D.
,
Li
,
X.
,
Li
,
H.
, and
Lei
,
J.
, 2009, “
Thermal Energy Storage Behavior of Al2O3-H2O Nanofluids
,”
Thermochim. Acta
,
483
(
1–2
), pp.
73
77
.
13.
Liu
,
Y.-D.
,
Zhou
,
Y.-G.
,
Tong
,
M.-W.
, and
Zhou
,
X.-S.
, 2009, “
Experimental Study of Thermal Conductivity and Phase Change Performance of Nanofluids PCMs
,”
Microfluid. Nanofluid.
,
7
(
4
), pp.
579
584
.
14.
Wu
,
S.
,
Zhu
,
D.
,
Zhang
,
X.
, and
Huang
,
J.
, 2010, “
Preparation and Melting/Freezing Characteristics of Cu/Paraffin Nanofluid as Phase-Change Material (PCM)
,”
Energy Fuels
,
24
(
3
), pp.
1894
1898
.
15.
Elgafy
,
A.
, and
Lafdi
,
K.
, 2005, “
Effect of Carbon Nanofiber Additives on Thermal Behavior of Phase Change Materials
,”
Carbon
,
43
(
15
), pp.
3067
3074
.
16.
Shaikh
,
S.
,
Lafdi
,
K.
, and
Hallinan
,
K.
, 2008, “
Carbon Nanoadditives to Enhance Latent Energy Storage of Phase Change Materials
,”
J. Appl. Phys.
,
103
(
9
), p.
094302
.
17.
Cui
,
Y.
,
Liu
,
C.
,
Hu
,
S.
, and
Yu
,
X.
, 2011, “
The Experimental Exploration of Carbon Nanofiber and Carbon Nanotube Additives on Thermal Behavior of Phase Change Materials
,”
Sol. Energy Mater. Sol. Cells
,
95
(
4
), pp.
1208
1212
.
18.
Zeng
,
J. L.
,
Liu
,
Y. Y.
,
Cao
,
Z. X.
,
Zhang
,
J.
,
Zhang
,
Z. H.
,
Sun
,
X. L.
, and
Xu
,
F.
, 2008, “
Thermal Conductivity Enhancement of MWNTS on the PANI/Tetradecanol Form-Stable PCM
,”
J. Therm Anal. Calorim.
,
91
(
2
), pp.
443
446
.
19.
Wang
,
J.
,
Xie
,
H.
, and
Xin
,
Z.
, 2008, “
Thermal Properties of Heat Storage Composites Containing Multiwalled Carbon Nanotubes
,”
J. Appl. Phys.
,
104
(
11
), p.
113537
.
20.
Wang
,
J.
,
Xie
,
H.
, and
Xin
,
Z.
, 2009, “
Thermal Properties of Paraffin Based Composites Containing Multi-Walled Carbon Nanotubes
,”
Thermochim. Acta
,
488
(
1–2
), pp.
39
42
.
21.
Zeng
,
J. L.
,
Cao
,
Z.
,
Yang
,
D. W.
,
Xu
,
F.
,
Sun
,
L. X.
,
Zhang
,
X. F.
, and
Zhang
,
L.
, 2009, “
Effects of MWNTS on Phase Change Enthalpy and Thermal Conductivity of a Solid-Liquid Organic PCM
,”
J. Therm Anal. Calorim.
,
95
(
2
), pp.
507
512
.
22.
Wang
,
J.
,
Xie
,
H.
,
Xin
,
Z.
,
Li
,
Y.
, and
Chen
,
L.
, 2010, “
Enhancing Thermal Conductivity of Palmitic Acid Based Phase Change Materials With Carbon Nanotubes as Fillers
,”
Sol. Energy
,
84
(
2
), pp.
339
344
.
23.
Wang
,
J.
,
Xie
,
H.
,
Xin
,
Z.
, and
Li
,
Y.
, 2010, “
Increasing the Thermal Conductivity of Palmitic Acid by the Addition of Carbon Nanotubes
,”
Carbon
,
48
(
14
), pp.
3979
3986
.
24.
Zeng
,
J. L.
,
Cao
,
Z.
,
Yang
,
D. W.
,
Sun
,
L. X.
, and
Zhang
,
L.
, 2010, “
Thermal Conductivity Enhancement of Ag Nanowires on an Organic Phase Change Material
,”
J. Therm Anal. Calorim.
,
101
(
1
), pp.
385
389
.
25.
Cho
,
S. H.
, and
Sunderland
,
J. E.
, 1969, “
Heat-Conduction Problems with Melting or Freezing
,”
ASME J. Heat Transfer
,
91
(
3
), pp.
421
426
.
26.
Özışık
,
M. N.
, 1980,
Heat Conduction
,
John Wiley & Sons, Inc.
,
New York
, pp.
419
423
.
27.
Progelhof
,
R. C.
,
Throne
,
J. L.
, and
Ruetsch
,
R. R.
, 1976, “
Methods for Predicting the Thermal Conductivity of Composite Systems: A Review
,”
Polym. Eng. Sci.
,
16
(
9
), pp.
615
625
.
28.
Khodadadi
,
J. M.
, and
Fan
,
L.
, 2009, “
Expedited Freezing of Nanoparticle-Enhanced Phase Change Materials (NEPCM) Exhibited Through a Simple 1-D Stefan Problem Formulation
,”
ASME Summer Heat Transfer Conference
,
San Francisco
,
CA
, July 19–23, Paper No. HT2009–88409.
29.
Sulfredge
,
C. D.
,
Chow
,
L. C.
, and
Tagavi
,
K. A.
, 1993, “
Void Initiation and Growth in Unidirectional Freezing: The Influence of Natural Convection
,”
Exp. Heat Transfer
,
6
(
4
), pp.
411
436
.
30.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2007, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
,
129
(
5
), pp.
617
623
.
31.
Boger
,
D. V.
, and
Westwater
,
J. W.
, 1967, “
Effect of Buoyancy on the Melting and Freezing Process
,”
ASME J. Heat Transfer
,
89
(
1
), pp.
81
89
.
32.
Clary
,
D. R.
, and
Mills
,
G.
, 2011, “
Preparation and Thermal Properties of CuO Particles
”,
J. Phys. Chem. C
,
115
(
5
), pp.
1767
1775
.
33.
Stryker
,
P. C.
, and
Sparrow
,
E. M.
, 1990, “
Application of a Spherical Thermal Conductivity Cell to Solid n-Eicosane Paraffin
,”
Int. J. Heat Mass Transfer
,
33
(
9
), pp.
1781
1793
.
34.
Fan
,
L.
, 2011, “
Enhanced Thermal Conductivity and Expedited Freezing of Nanoparticle Suspensions Utilized as Novel Phase Change Materials
,” Ph.D. thesis, Department of Mechanical Engineering, Auburn University, Auburn, AL.
You do not currently have access to this content.