Evaporation of a nanoscale meniscus on a nanostructured heater surface is simulated using molecular dynamics. The nanostructures, evenly spaced on the surface, are ridges with a width and height of 0.55 nm and 0.96 nm, respectively. The simulation results show that the film breaks during the early stages of evaporation due to the presence of nanostructures and no nonevaporating film forms (unlike a previous simulation performed in the absence of nanostructures where nonevaporating film forms on the smooth surface). High heat transfer and evaporation rates are obtained. We conclude that heat transfer rates can be significantly increased during bubble nucleation and growth by the presence of nanostructure ridges on the surface as it can break the formation of nonevaporating film. This causes additional chaos and allows the surrounding cooler liquid to come in contact with the surface providing heat transfer enhancements.

References

1.
Carey
,
V. P.
,
1992
,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
Taylor & Francis
,
London
.
2.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
, and
Mukherjee
,
A.
,
2005
, “
Experimental Study of Heat Transfer in an Evaporating Meniscus on a Moving Heated Surface
,”
ASME J. Heat Transfer
,
127
(3), pp.
244
252
.10.1115/1.1857948
3.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2006
, “
Numerical Study of an Evaporating Meniscus on a Moving Heated Surface
,”
ASME J. Heat Transfer
,
128
(2), pp.
1285
1292
.10.1115/1.2397093
4.
Panchamgam
,
S. S.
,
Chatterjee
,
A.
,
Plawisky
,
J. L.
, and
Wayner
,
P. C.
,
2008
, “
Comprehensive Experimental and Theoretical Study of Fluid Flow and Heat Transfer in a Microscopic Evaporating Meniscus in a Miniature Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5368
5379
.10.1016/j.ijheatmasstransfer.2008.03.023
5.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2008
, “
An Analytical Solution for the Total Heat Transfer in the Thin-Film Region of an Evaporating Meniscus
,”
Int. J. Heat Mass Transfer
,
51
, pp.
6317
6322
.10.1016/j.ijheatmasstransfer.2008.06.011
6.
Maruyama
,
S.
, and
Kimura
,
T.
,
1999
, “
A Study on Thermal Resistance Over a Solid-Liquid Interface by the Molecular Dynamics Method
,”
Therm. Sci. Eng.
,
7
, pp.
63
75
.
7.
Wemhoff
,
A. P.
, and
Carey
,
V. P.
,
2005
, “
Molecular Dynamics Exploration of Thin Liquid Films on Solid Surfaces. 1. Monatomic Fluid Films
,”
Microscale Thermophys. Eng.
,
9
, pp.
331
349
.10.1080/10893950500357814
8.
Wu
,
Y. W.
, and
Pan
,
C.
,
2006
, “
Molecular Dynamics Simulation of Thin Film Evaporation of Lennard-Jones Liquid
,”
Nanoscale Microscale Thermophys. Eng.
,
10
, pp.
157
166
.10.1080/10893950600643030
9.
Yi
,
P.
,
Poulikakos
,
D.
,
Walther
,
J.
, and
Yadigaroglu
,
G.
,
2002
, “
Molecular Dynamics Simulation of Vaporization of an Ultra-Thin Liquid Argon Layer on a Surface
,
Int. J. Heat Mass Transfer
,
45
, pp.
2087
2100
.10.1016/S0017-9310(01)00310-6
10.
Maroo
,
S. C.
, and
Chung
,
J. N.
,
2008
, “
Molecular Dynamic Simulation of Platinum Heater and Associated Nano-Scale Liquid Argon Film Evaporation and Colloidal Adsorption Characteristics
,”
J. Colloid Interface Sci.
,
328
, pp.
134
146
.10.1016/j.jcis.2008.09.018
11.
Maroo
,
S. C.
, and
Chung
,
J. N.
,
2009
, “
Nanoscale Liquid-Vapor Phase-Change Physics in Nonevaporating Region at the Three-Phase Contact Line
,”
J. Appl. Phys.
,
106
, p.
064911
.10.1063/1.3225992
12.
Maroo
,
S. C.
, and
Chung
,
J. N.
,
2010
, “
Heat Transfer Characteristics and Pressure Variation in a Nanoscale Evaporating Meniscus
,”
Int. J. Heat Mass Transfer
,
53
, pp.
3335
3345
.10.1016/j.ijheatmasstransfer.2010.02.030
13.
Son
,
G.
,
Dhir
,
V. K.
, and
Ramanujapu
,
N.
,
1999
, “
Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
121
(3), pp.
623
631
.10.1115/1.2826025
14.
Kandlikar
,
S. G.
,
2001
, “
Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(6), pp.
1071
1079
.10.1115/1.1409265
15.
Jo
,
H. J.
,
Ahn
,
H. S.
,
Kang
,
S. H.
, and
Kim
,
M. H.
,
2011
, “
A Study of Nucleate Boiling Heat Transfer on Hydrophilic, Hydrophobic and Heterogeneous Wetting Surfaces
,”
Int. J. Heat Mass Transfer
,
54
, pp.
5643
5652
.10.1016/j.ijheatmasstransfer.2011.06.001
16.
Li
,
S. H.
,
Furberg
,
R.
,
Toprak
,
M. S.
,
Palm
,
B.
, and
Muhammed
,
M.
,
2008
, “
Nature-Inspired Boiling Enhancement by Novel Nanostructured Macroporous Surfaces
,”
Adv. Funct. Mater.
,
18
, pp.
2215
2220
.10.1002/adfm.200701405
17.
Vemuri
,
S.
, and
Kim
,
K. J.
,
2005
, “
Pool Boiling of Saturated FC-72 on Nano-porous Surface
,”
Int. Commun. Heat Mass Transfer
,
32
, pp.
27
31
.10.1016/j.icheatmasstransfer.2004.03.020
18.
Lee
,
C. Y.
,
Bhuiya
,
M. M. H.
, and
Kim
,
K. J.
,
2010
, “
Pool Boiling Heat Transfer With Nano-Porous Surface
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4274
4279
.10.1016/j.ijheatmasstransfer.2010.05.054
19.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effects on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4105
4116
.10.1016/j.ijheatmasstransfer.2007.02.002
20.
Ahn
,
H. S.
,
Sathyamurthi
,
V.
, and
Banerjee
,
D.
,
2009
, “
Pool Boiling Experiments on a Nano-Structured Surface
,”
IEEE Trans. Compon. Packag. Technol.
,
32
, pp.
156
165
.10.1109/TCAPT.2009.2013980
21.
Sathyamurthi
,
V.
,
Ahn
,
H. S.
,
Banerjee
,
D.
, and
Lau
,
S. C.
,
2009
, “
Subcooled Pool Boiling Experiments on Horizontal Heaters Coated With Carbon Nanotubes
,”
ASME J. Heat Transfer
,
131
(7), p.
071501
.10.1115/1.3000595
22.
Hsieh
,
S. S.
, and
Lin
,
C. Y.
,
2010
, “
Subcooled Convective Boiling in Structured Surface Microchannels
,”
J. Micromech. Microeng.
,
20
, p.
015027
.10.1088/0960-1317/20/1/015027
23.
Lu
,
Y. W.
, and
Kandlikar
,
S. G.
,
2011
, “
Nanoscale Surface Modification Techniques for Pool Boiling Enhancement—A Critical Review and Future Directions
,”
Heat Transfer Eng.
,
32
, pp.
827
842
.10.1080/01457632.2011.548267
24.
Stoddard
,
S. D.
, and
Ford
,
J.
,
1973
, “
Numerical Experiments on the Stochastic Behavior of a Lennard-Jones Gas System
,”
Phys. Rev. A
,
8
, pp.
1504
1517
.10.1103/PhysRevA.8.1504
25.
Maroo
,
S. C.
, and
Chung
,
J. N.
,
2010
, “
A Novel Fluid-Wall Heat Transfer Model for Molecular Dynamics Simulations
,”
J. Nanopart. Res.
,
12
, pp.
1913
1924
.10.1007/s11051-009-9755-2
26.
Rapaport
,
D. C.
,
2004
,
The Art of Molecular Dynamics Simulation
, 2nd ed.,
Cambridge University Press
,
London.
27.
Allen
,
M. P.
, and
Tildesley
,
D. J.
,
1987
,
Computer Simulation of Liquids
,
Clarendon Press
,
Oxford
.
28.
Sadus
,
R. J.
,
1999
,
Molecular Simulation of Fluids
,
Elsevier
,
The Netherlands
.
You do not currently have access to this content.