A new experimental method based on infrared thermography (IRT) is developed to study deformation-induced anisotropic thermal conductivity in polymers. An analytic solution for the temperature field of samples heated by a point source is utilized with a robust fitting procedure allowing for quantitative measurement of two components of the normalized thermal conductivity tensor of uniaxially stretched samples. In order to validate the method, we compare measurements on a cross-linked polybutadiene network with those obtained from a previously developed technique based on forced Rayleigh scattering (FRS). We find excellent agreement between the two techniques. Uncertainty in the measurements using IRT method is estimated to be about 2–5%. The accuracy of the method and its potential application to nontransparent materials make it a good alternative to extend current research on anisotropic thermal transport in polymeric materials.

References

1.
Kastberger
,
G.
, and
Reinhold
,
S.
,
2003
, “
Infrared Imaging Technology and Biological Applications
,”
Behav. Res. Methods, Instrum. Comput.
,
35
(1)
, pp.
429
439
.10.3758/BF03195520
2.
Jiangm
,
L. J.
,
Ng
,
E. Y. K.
,
Yeo
,
A. C. B.
,
Wu
,
S.
,
Pan
,
F.
,
Yau
,
W. Y.
,
Chen
,
J. H.
, and
Yang
,
Y.
,
2005
, “
A Perspective on Medical Infrared Imaging
,”
J. Med. Eng. Technol.
,
29
(6)
, pp.
257
267
.10.1080/03091900512331333158
3.
Maldague
,
X. P. V.
,
2001
,
Theory and Practice of Infrared Technology for Nondestructive Testing
,
Wiley
,
New York
.
4.
Miller
,
J. L.
,
1994
,
Principles of Infrared Technology: A Practical Guide to the State of the Art
,
Van Nostrand Reinhold
,
New York
.
5.
Sénarmont
,
H. H. de
,
1847
, “
Mémoir Sur la Conductibilitédes Substances Cristalisées Pour la Chaleur
,”
Ann. Chim. Phys.
,
21
, pp.
457
470
.
6.
Narasimhan
,
T. N.
,
2010
, “
Thermal Conductivity Through the 19th Century
,”
Ann. Chim. Phys.
,
63
, pp.
36
41
.10.1063/1.3480074
7.
Tautz
,
H.
,
1959
, “
Bestimmung der Warmeleifahigkeit von Kautschukvulkanisaten in Abhangigkeit von der Dehnung
,”
Exp. Tech. Phys.
,
7
, pp.
1
14
.
8.
Henning
,
K.
, and
Knappe
,
W.
,
1964
, “
Anisotropy of Thermal Conductivity in Stretched Amorphous Linear Polymer and in Strained Elastomers
,”
J. Polym. Sci. Part C
,
6
(1)
, pp.
167
174
.10.1002/polc.5070060119
9.
Washo
,
B. D.
, and
Hansen
,
M. A.
,
1969
, “
Heat Conduction in Linear Amorphous High Polymers: Orientation Anisotropy
,”
J. Appl. Phys.
,
40
(6)
, pp.
2423
2327
.10.1063/1.1658009
10.
Choy
,
C.
,
Luk
,
W.
, and
Chen
,
F.
,
1978
, “
Thermal Conductivity of Highly Oriented Polyethylene
,”
Polymer
,
19
(2)
, pp.
155
162
.10.1016/0032-3861(78)90032-0
11.
Choy
,
C.
,
Chen
,
F. C.
, and
Luk
,
W.
,
1980
, “
Thermal Conductivity of Oriented Crystalline Polymers
,”
J. Polym. Sci., Polym. Phys. Ed.
,
18
(6)
, pp.
1187
1207
.10.1002/pol.1980.180180603
12.
Choy
,
C.
, and
Leung
,
W. P.
,
1983
, “
Thermal Conductivity of Ultradrawn Polyethylene
,”
J. Polym. Sci., Polym. Phys. Ed.
,
21
(7)
, pp.
1243
1246
.10.1002/pol.1983.180210722
13.
Choy
,
C.
,
Wong
,
G. W.
,
Yang
,
G. W.
, and
Kanamoto
,
T.
,
1999
, “
Elastic Modulus and Thermal Conductivity of Ultradrawn Polyethylene
,”
J. Polym. Sci., Polym. Phys. Ed.
,
37
(23)
, pp.
3359
3367
.10.1002/(SICI)1099-0488(19991201)37:23<3359::AID-POLB11>3.0.CO;2-S
14.
Mergenthaler
,
D. B.
,
Pietralla
,
M.
,
Roy
,
S.
, and
Kilian
,
H. G.
,
1992
, “
Thermal Conductivity in Ultraoriented Polyethylene
,”
Macromolecules
,
25
(13)
, pp.
3500
3502
.10.1021/ma00039a030
15.
Greisinger
,
A.
,
Hurler
,
W.
, and
Pietralla
,
M.
,
1997
, “
A Photothermal Method With Step Heating for Measuring the Thermal Diffusivity of Anisotropic Solids
,”
Int. J. Heat Mass Transfer
,
40
(13)
, pp.
3049
3059
.10.1016/S0017-9310(96)00378-X
16.
Blum
,
K.
,
Kilian
,
H-G.
, and
Pietralla
,
M.
,
1983
, “
A Method for Measuring the Anisotropy Ratio of the Thermal Conductivity of Anisotropic Solids
,”
J. Phys. E: Sci. Instrum.
,
16
(8)
, pp.
807
812
.10.1088/0022-3735/16/8/022
17.
Eichler
,
J. H.
,
Günter
,
P.
, and
Pohl
,
D. W.
,
1986
,
Laser-Induced Dynamic Gratings
,
Springer-Verlag
,
Berlin
.
18.
Nagasaka
,
Y.
,
Hatakeyama
,
T.
,
Okuda
,
M.
, and
Nagashima
,
A.
,
1999
, “
Measurement of the Thermal Diffusivity of Liquids by the Forced Rayleigh Scattering Method: Theory and Experiment
,”
Rev. Sci. Instrum.
,
59
(7)
, pp.
1156
1168
.10.1063/1.1139743
19.
Venerus
,
D. C.
,
Schieber
,
J. D.
,
Iddir
,
H.
,
Guzman
,
J. D.
, and
Broerman
,
A. W.
,
1999
, “
Measurement of Thermal Diffusivity in Polymer Melts Using Forced Rayleigh Light Scattering
,”
J. Polym. Sci., Part B
,
37
(11)
, pp.
1069
1078
.10.1002/(SICI)1099-0488(19990601)37:11<1069::AID-POLB3>3.0.CO;2-U
20.
Treloar
,
L. R. G.
,
1958
,
The Physics of Rubber Elasticity
,
Oxford University
,
Oxford, UK
.
21.
Broerman
,
A. W.
,
Venerus
,
D. C.
, and
Schieber
,
J. D.
,
1999
, “
Evidence for the Stress-Thermal Rule in an Elastomer Subjected to Simple Elongation
,”
J. Chem. Phys.
,
111
, pp.
6965
6969
.10.1063/1.479989
22.
Venerus
,
D. C.
, and
Kolev
,
D. N.
,
2009
, “
Anisotropic Thermal Conductivity in Cross-Linked Polybutadienes Subjected to Uniaxial Elongation
,”
Macromolecules
,
42
(7)
, pp.
2594
2598
.10.1021/ma900015z
23.
Nieto Simavilla
,
D.
,
Schieber
,
J. D.
, and
Venerus
,
D. C.
,
2012
, “
Anisotropic Thermal Transport in a Crosslinked Polyisoprene Rubber Subjected to Uniaxial Elongation
,”
J. Polym. Sci. B, Polym. Phys.
,
50
(23)
, pp.
1638
1644
.10.1002/polb.23173
24.
Schieber
,
J. D.
,
Venerus
,
D. C.
, and
Gupta
,
S.
,
2012
, “
Molecular Origins of Anisotropy in the Thermal Conductivity of Deformed Polymer Melts: Stress Versus Orientation Contributions
,”
Soft Matter
,
8
(47)
, pp.
11781
11785
.10.1039/c2sm26788h
25.
Gupta
,
S.
,
Schieber
,
J. D.
, and
Venerus
,
D. C.
,
2013
, “
Anisotropic Thermal Conduction in Polymer Melts in Uniaxial Elongation Flows
,”
J. Rheol.
,
57
(2)
, pp.
427
440
.10.1122/1.4776237
26.
Balasubramanian
,
V.
,
Bush
,
K.
,
Smoukov
,
S.
,
Venerus
,
D. C.
, and
Schieber
,
J. D.
,
2005
, “
Measurements of Flow-Induced Anisotropic Thermal Conduction in a Polyisobutylene Melt Following Step Shear Flow
,”
Macromolecules
,
38
(
14
), pp.
6210
6215
.10.1021/ma050827j
27.
Venerus
,
D. C.
,
Schieber
,
J. D.
,
Balasubramanian
,
V.
,
Bush
,
K.
, and
Smoukov
,
S.
,
2004
, “
Anisotropic Thermal Conduction in a Polymer Liquid Subjected to Shear Flow
,”
Phys. Rev. Lett.
,
93
(9)
, p.
098301
.10.1103/PhysRevLett.93.098301
28.
Venerus
,
D. C.
,
Schieber
,
J. D.
,
Iddir
,
H.
,
Guzman
,
J. D.
, and
Broerman
,
A. W.
,
1999
, “
Relaxation of Anisotropic Thermal Diffusivity in a Polymer Melt Following Step Shear Strain
,”
Phys. Rev. Lett.
,
82
(2)
, pp.
366
369
.10.1103/PhysRevLett.82.366
29.
Liu
,
J.
, and
Yang
,
R.
,
2010
, “
Tuning the Thermal Conductivity of Polymers With Mechanical Strains
,”
Phys. Rev. B
,
81
(17)
, p.
174122
.10.1103/PhysRevB.81.174122
30.
Algaer
,
E. A.
,
Alaghemandi
,
M.
,
Böhm
,
M. C.
, and
Müller-Plathe
,
F.
,
2009
, “
Anisotropy of the Thermal Conductivity of Stretched Amorphous Polystyrene in Supercritical Carbon Dioxide Studied by Reverse NonEquilibrium Molecular Dynamics Simulations
,”
J. Phys. Chem. B
,
113
, pp.
14596
14603
.10.1021/jp906447a
31.
van den Brule
,
B. H. A. A.
,
1989
, “
A Network Theory for the Thermal Conductivity of an Amorphous Polymeric Material
,”
Rheol. Acta
,
28
(4)
, pp.
257
266
.10.1007/BF01329335
32.
van den Brule
,
B. H. A. A.
,
1990
, “
Anisotropic Conduction of Heat Caused by Molecular Orientation in a Flowing Polymeric Liquid
,”
Rheol. Acta
,
29
(3)
, pp.
175
181
.10.1007/BF01331353
33.
Mott
,
P. H.
, and
Roland
,
C. M.
,
1996
, “
Elasticity of Natural Rubber Networks
,”
Macromolecules
,
29
(21)
, pp.
6941
6945
.10.1021/ma960189s
34.
Maldague
,
X. P. V.
,
1968
,
Boundary Value Problems of Heat Conduction
,
Dover
,
Mineola, NY
.
35.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Oxford University
,
New York
.
36.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
37.
Chambers
,
B.
, and
Lee
,
T. T.
,
1997
, “
A Numerical Study of Local and Average Natural Convection Nusselt Numbers for Simultaneous Convection Above and Below a Uniformly Heated Horizontal Thin Plate
,”
ASME J. Heat Transfer
,
119
(
1
), pp.
102
108
.10.1115/1.2824074
38.
Wei
,
J. J.
,
Yu
,
B.
,
Wang
,
H. S.
, and
Tao
,
W. Q.
,
2002
, “
Numerical Study of Simultaneous Natural Convection Heat Transfer From Both Surfaces of a Uniformly Heated Thin Plate With Arbitrary Inclination
,”
Heat Mass Transfer
,
38
(4–5)
, pp.
309
317
.10.1007/s002310100276
39.
Ji
,
Q.
, and
Haralick
,
R. M.
,
1999
, “
Error Propagation for Computer Vision Performance Characterization
,”
International Conference on Imaging Science
, Systems, and Technology, Las Vegas, NV.
You do not currently have access to this content.