Computations of heat transfer and fluid flow of a plane isothermal fully developed turbulent plane jet flowing into a rectangular hot cavity are reported in this paper. Both velocity and temperature distributions are computed by solving the two-dimensional unsteady Reynolds-averaged Navier–Stokes (URANS) equations. This approach is based on one-point statistical modeling using the energy-specific dissipation (k-ω) turbulence model. The numerical predictions are achieved by finite volume method. This problem is relevant to a wide range of practical applications including forced convection and the ventilation of mines, enclosure, or corridors. The structural properties of the flow and heat transfer are described for several conditions. An oscillatory regime is evidenced for particular jet location, inducing for each variable a periodic behavior versus time. The jet flapping phenomena are detailed numerically by the instantaneous streamlines contours and the vorticity magnitude contours within one period of oscillation. The heat transfer along the cavity walls is also periodic. Time average of mean Nusselt number is correlated according with some problem parameters.

References

1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
2.
Li
,
P. W.
, and
Tao
,
W. Q.
,
1993
, “
Numerical and Experimental Investigations on Heat/Mass Transfer of Slot-Jet Impingement in a Rectangular Cavity
,”
Int. J. Heat Fluid Flow
,
14
(
3
), pp.
246
253
.10.1016/0142-727X(93)90055-R
3.
Brignoni
,
L. A.
, and
Garimella
,
S. V.
,
2000
, “
Effect of Nozzle Inlet Chamfering on Pressure and Heat Transfer in Confined Air Jet Impingement
,”
Int. J. Heat Mass Transfer
,
43
(
7
), pp.
1133
1139
.10.1016/S0017-9310(99)00207-0
4.
Chan
,
T. L.
,
Leung
,
C. W.
,
Jambunathan
,
K.
,
Ashforth-Frost
,
S.
,
Zhou
,
Y.
, and
Liu
,
M. H.
,
2002
, “
Heat Transfer Characteristics of a Slot Jet Impinging on a Semi-Circular Convex Surface
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
993
1006
.10.1016/S0017-9310(01)00217-4
5.
Zidouni-Kendil
,
F.
,
Mataoui
,
A.
, and
Benaissa
,
A.
,
2009
, “
Flow Structures of a Round Jet Evolving Into a Cylindrical Cavity
,”
Int. J. Transp. Phenom.
,
11
(
2
), pp.
165
183
.
6.
Benmouhoub
,
D.
, and
Mataoui
,
A.
,
2013
, “
Turbulent Heat Transfer From a Slot Jet Impinging on a Flat Plate
,”
ASME J. Heat Transfer
,
135
(
10
), p.
102201
.10.1115/1.4024554
7.
Halouane
,
Y.
,
Mataoui
,
A.
, and
Iachachene
,
F.
,
2014
, “
Heat Transfer Prediction of a Jet Impinging a Cylindrical Deadlock Area
,”
ASME J. Heat Transfer
,
136
(
11
), p.
112203
.10.1115/1.4028323
8.
Ogab
,
A.
,
1985
, “
Contribution a L’étude de L’évolution d'un Jet Plan Turbulent dans une Cavité de Section Rectangulaire
,” Thèse De Magister, Mécanique Des Fluides, Usthb Alger.
9.
Shakouchi
,
T.
,
1989
, “
A New Fluidic Oscillator, Flowmeter, Without Control Port and Feedback Loop
,”
ASME J. Dyn. Syst., Meas., Control
,
111
(
3
), pp.
535
539
.10.1115/1.3153085
10.
Shakouchi
,
T.
,
Suematsu
,
Y.
, and
Ito
,
T.
,
1982
, “
A Study on Oscillatory Jet in a Cavity
,”
Bull. JSME
,
25
(
206
), pp.
1258
1265
.10.1299/jsme1958.25.1258
11.
Shakouchi
,
T.
,
Kuzuhara
,
S.
, and
Yamaguchi
,
J.
,
1986
, “
Oscillatory Phenomena of an Attached Jet
,”
Bull. JSME
,
29
(
250
), pp.
1117
1123
.10.1299/jsme1958.29.1117
12.
Mataoui
,
A.
,
Schiestel
,
R.
, and
Salem
,
A.
,
2001
, “
Flow Regimes of Interaction of a Turbulent Plane Jet Into a Rectangular Cavity: Experimental Approach and Numerical Modelling
,”
Flow, Turbul. Combust.
,
67
(
4
), pp.
267
304
.10.1023/A:1015255211723
13.
Mataoui
,
A.
, and
Schiestel
,
R.
,
2009
, “
Unsteady Phenomena of an Oscillating Turbulent Jet Flow Inside a Cavity: Effect of Aspect Ratio
,”
J. Fluids Struct.
,
25
(
1
), pp.
60
79
.10.1016/j.jfluidstructs.2008.03.010
14.
Amon
,
C. H.
,
Majumdar
,
D.
,
Herman
,
C. V.
,
Myinger
,
F.
,
Mikic
,
B. B.
, and
Sekulic
,
D. P.
,
1992
, “
Numerical and Experiment Studies of Self-Sustained Oscillatory Flows in Communicating Channels
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
3115
3129
.10.1016/0017-9310(92)90331-L
15.
Valencia
,
A.
,
1999
, “
Heat Transfer Enhancement Due to Self-Sustained Oscillating Transverse Vortices in Channels With Periodically Mounted Rectangular Bars
,”
Int. J. Heat Mass Transfer
,
42
(
11
), pp.
2053
2062
.10.1016/S0017-9310(98)00295-6
16.
Kim
,
A.
,
2012
, “
Numerical Study on Heat Transfer in Laminar Pulsed Slot Jets Impinging on a Surface
,”
World Acad. Sci., Eng. Technol.
,
6
(
9
), pp.
476
479
.
17.
Xu
,
P.
,
Yu
,
B.
,
Qiu
,
S.
,
Poh
,
H. J.
, and
Mujumdar
,
A. S.
,
2010
, “
Turbulent Impinging Jet Heat Transfer Enhancement Due to Intermittent Pulsation
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1247
1252
.10.1016/j.ijthermalsci.2010.01.020
18.
ANSYS FLUENT 14.0 CFD Code Documentation.
19.
Aksouh
,
M.
,
Mataoui
,
A.
,
Seghouani
,
N.
, and
Haddad
,
Z.
,
2010
, “
Assessment of Performance of Low Reynolds Turbulence Models in Predicting Natural
,”
Proceedings of the 5th European Conference on Computational Fluid Dynamics, ECCOMAS CFD
, J. C. F. Pereira and A. Sequeira eds., Lisbon, Portugal, June 14–17.
20.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
21.
Wilcox
,
D. C.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
22.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
(Series in Computational Methods in Mechanics and Thermal Sciences),
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.