In general, offset strip fin (OSF) used in plate-fin heat exchangers is able to provide a greater heat transfer coefficient than the plain fin with the same cross section, but it will also cause the increase of flow friction and pressure drop owing to the fin offset. A new parameter denoted by Ψ*, called relative entropy generation distribution factor, is proposed in this paper to comprehensively reflect the thermodynamic performance of different passage structures in plate-fin heat exchanger. This parameter physically represents relative changes of entropy generation and irreversibility, which are induced by both heat transfer and friction loss due to the utilization of OSF fins. The high magnitude of Ψ* represents a beneficial contribution of OSF with higher degree of the heat transfer enhancement. The proposed method is more reasonable and comprehensive than either the conventional augmentation entropy generation number, Ns,a, or the entropy generation distribution factor, ψ, to evaluate the heat transfer enhancement for OSF cores subject to various operating conditions. With the proposed method, the relative effects of the geometrical parameters of OSF fins, such as the fin thickness-to-height ratio α, fin density γ, and fin thickness-to-length ratio δ, on the heat transfer enhancement are discussed in detail. The results show that relatively small δ results in a better performance, while the parameter α or γ, which contribute to a higher degree of heat transfer enhancement of OSF fin, should be determined after the selection of the other two geometric parameters.

References

1.
London
,
A. L.
,
1964
, “
Compact Heat Exchangers
,”
ASME Mech. Eng.
,
86
, pp.
31
34
.
2.
Shah
,
R. K.
,
1975
, “
Laminar Flow Friction and Forced Convection Heat Transfer in Ducts of Arbitrary Geometry
,”
Int. J. Heat Mass Transfer
,
18
(
7
), pp.
849
862
.10.1016/0017-9310(75)90176-3
3.
Zhang
,
J.
,
Kundu
,
J.
, and
Manglik
,
R. M.
,
2004
, “
Effect of Fin Waviness and Spacing on the Lateral Vortex Structure and Laminar Heat Transfer in Wavy-Plate-Fin Cores
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1719
1730
.10.1016/j.ijheatmasstransfer.2003.10.006
4.
Kim
,
J. H.
,
Yun
,
J. H.
, and
Lee
,
C. S.
,
2004
, “
Heat-Transfer and Friction Characteristics for the Louver-Fin Heat Exchanger
,”
J. Thermophys. Heat Transfer
,
18
(
1
), pp.
58
64
.10.2514/1.9123
5.
Guo
,
L.
,
Qin
,
F.
,
Chen
,
J.
, and
Chen
,
Z.
,
2008
, “
Lubricant Side Thermal–Hydraulic Characteristics of Steel Offset Strip Fins With Different Flow Angles
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
907
914
.10.1016/j.applthermaleng.2007.07.005
6.
Bhowmik
,
H.
, and
Lee
,
K.-S.
,
2009
, “
Analysis of Heat Transfer and Pressure Drop Characteristics in an Offset Strip Fin Heat Exchanger
,”
Int. Commun. Heat Mass
,
36
(
3
), pp.
259
263
.10.1016/j.icheatmasstransfer.2008.11.001
7.
Li
,
J.
,
Wang
,
S.
,
Cai
,
W.
, and
Zhang
,
W.
,
2010
, “
Numerical Study on Air-Side Performance of an Integrated Fin and Micro-Channel Heat Exchanger
,”
Appl. Therm. Eng.
,
30
(
17–18
), pp.
2738
2745
.10.1016/j.applthermaleng.2010.07.028
8.
Li
,
W.
, and
Wang
,
X.
,
2010
, “
Heat Transfer and Pressure Drop Correlations for Compact Heat Exchangers With Multi-Region Louver Fins
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
2955
2962
.10.1016/j.ijheatmasstransfer.2010.04.002
9.
Wang
,
Y.
,
He
,
Y.
,
Lei
,
Y.
, and
Zhang
,
J.
,
2010
, “
Heat Transfer and Hydrodynamics Analysis of a Novel Dimpled Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1273
1281
.10.1016/j.expthermflusci.2010.05.008
10.
Khoshvaght-Aliabadi
,
M.
,
Hormozi
,
F.
, and
Zamzamian
,
A.
,
2014
, “
Role of Channel Shape on Performance of Plate-Fin Heat Exchangers: Experimental Assessment
,”
Int. J. Therm. Sci.
,
79
, pp.
183
193
.10.1016/j.ijthermalsci.2014.01.004
11.
Nelson
,
R. M.
, and
Bergles
,
A. E.
,
1986
, “
Performance Evaluation for Tubeside Heat Transfer Enhancement of a Flooded-Evaporator Water Chiller
,”
ASHRAE Trans.
,
92
(
Pt. 1B
), pp.
739
755
.
12.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
715
726
.10.1016/0017-9310(81)90015-6
13.
Cowell
,
T. A.
,
1990
, “
A General Method for the Comparison of Compact Heat Transfer Surfaces
,”
ASME J. Heat Transfer
,
112
(
2
), pp.
288
294
.10.1115/1.2910374
14.
Cowell
,
T. A.
,
Heikal
,
M. R.
, and
Achaichia
,
A.
,
1995
, “
Flow and Heat Transfer in Compact Louvered Fin Surfaces
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
192
199
.10.1016/0894-1777(94)00093-N
15.
Dubrovskii
,
E. V.
, and
Vasil'ev
,
V. Y.
,
2002
, “
A Method for the Relative Comparison of the Thermohydraulic Efficiency of Heat-Transfer Surfaces and Heat Exchangers
,”
Therm. Eng.
,
49
(
5
), pp.
401
407
.
16.
Dubrovskii
,
E. V.
, and
Vasil'ev
,
V. Y.
,
2002
, “
A Method for the Relative Comparison of the Thermohydraulic Efficiency of Heat Transfer Enhancement in the Channels of Heat Transfer Surfaces
,”
Therm. Eng.
,
49
(
6
), pp.
501
504
.
17.
Bejan
,
A.
,
1978
, “
General Criterion for Rating Heat-Exchanger Performance
,”
Int. J. Heat Mass Transfer
,
21
(
5
), pp.
655
658
.10.1016/0017-9310(78)90064-9
18.
Bejan
,
A.
, and
Pfister
,
P. A.
, Jr.
,
1980
, “
Evaluation of Heat Transfer Augmentation Techniques Based on Their Impact on Entropy Generation
,”
Lett. Heat Mass Transfer
,
7
(
2
), pp.
97
106
.10.1016/0094-4548(80)90037-5
19.
Manglik
,
R. M.
, and
Fang
,
P. P.
,
1994
, “
Second-Law Analysis of Heat Transfer Enhancement in Offset-Strip-Fin Compact Heat Exchangers
,”
10th International Heat Transfer Conference (IHTC10)
,
Brighton, UK
, pp.
67
72
.
20.
Tagliafico
,
L.
, and
Tanda
,
G.
,
1996
, “
A Thermodynamic Method for the Comparison of Plate-Fin Heat Exchanger Performance
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
805
809
.10.1115/1.2822706
21.
Zimparov
,
V.
,
2001
, “
Enhancement of Heat Transfer by a Combination of Three-Start Spirally Corrugated Tubes With a Twisted Tape
,”
Int. J. Heat Mass Transfer
,
44
(
1
), pp.
169
180
.10.1016/S0017-9310(00)00074-0
22.
Zimparov
,
V.
,
2000
, “
Extended Performance Evaluation Criteria for Enhanced Heat Surfaces: Heat Transfer Through Ducts With Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
43
(
17
), pp.
3137
3155
.10.1016/S0017-9310(99)00317-8
23.
Zimparov
,
V. D.
, and
Vulchanov
,
N. L.
,
1994
, “
Performance Evaluation Criteria for Enhanced Heat Transfer Surfaces
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1807
1816
.10.1016/0017-9310(94)90069-8
24.
Chakraborty
,
S.
, and
Ray
,
S.
,
2011
, “
Performance Optimisation of Laminar Fully Developed Flow Through Square Ducts With Rounded Corners
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2522
2535
.10.1016/j.ijthermalsci.2011.06.006
25.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1995
, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
171
180
.10.1016/0894-1777(94)00096-Q
26.
Hesselgreaves
,
J. E.
,
2000
, “
Rationalisation of Second Law Analysis of Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
43
(
22
), pp.
4189
4204
.10.1016/S0017-9310(99)00364-6
27.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
, 3rd ed.,
McGraw-Hill
,
New York
.
28.
Dong
,
J. Q.
,
Chen
,
J. P.
,
Chen
,
Z. J.
, and
Zhou
,
Y. M.
,
2007
, “
Air-Side Thermal Hydraulic Performance of Offset Strip Fin Aluminum Heat Exchangers
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
306
313
.10.1016/j.applthermaleng.2006.08.005
29.
Peng
,
H.
, and
Ling
,
X.
,
2009
, “
Neural Networks Analysis of Thermal Characteristics on Plate-Fin Heat Exchangers With Limited Experimental Data
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2251
2256
.10.1016/j.applthermaleng.2008.11.011
30.
Madadi-Kandjani
,
E.
, and
Xiong
,
Q.
,
2014
, “
Validity of the Spring-Backed Membrane Model for Bubble–Wall Interactions With Compliant Walls
,”
Comput. Fluids
,
96
, pp.
116
121
.10.1016/j.compfluid.2014.03.010
31.
Xiong
,
Q.
,
Li
,
B.
, and
Xu
,
J.
,
2013
, “
GPU-Accelerated Adaptive Particle Splitting and Merging in SPH
,”
Comput. Phys. Commun.
,
184
(
7
), pp.
1701
1707
.10.1016/j.cpc.2013.02.021
32.
Chen
,
G.
,
Xiong
,
Q.
,
Morris
,
P. J.
,
Paterson
,
E. G.
,
Sergeev
,
A.
, and
Wang
,
Y.
,
2014
, “
OpenFOAM for Computational Fluid Dynamics
,”
Not. AMS
,
61
(
4
), pp.
354
363
.10.1090/noti1095
33.
Zhu
,
Y.
, and
Li
,
Y.
,
2008
, “
Three-Dimensional Numerical Simulation on the Laminar Flow and Heat Transfer in Four Basic Fins of Plate-Fin Heat Exchangers
,”
ASME J. Heat Transfer
,
130
(
11
), pp.
111801
111808
.10.1115/1.2970072
34.
Sheik
,
I. L.
,
Ranganayakulu
,
C.
, and
Shah
,
R. K.
,
2009
, “
Numerical Study of Flow Patterns of Compact Plate-Fin Heat Exchangers and Generation of Design Data for Offset and Wavy Fins
,”
Int. J. Heat Mass Transfer
,
52
(
17–18
), pp.
3972
3983
.10.1016/j.ijheatmasstransfer.2009.03.026
35.
Kim
,
M.-S.
,
Lee
,
J.
,
Yook
,
S.-J.
, and
Lee
,
K.-S.
,
2011
, “
Correlations and Optimization of a Heat Exchanger With Offset-Strip Fins
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
2073
2079
.10.1016/j.ijheatmasstransfer.2010.11.056
36.
Yang
,
Y.
, and
Li
,
Y.
,
2014
, “
General Prediction of the Thermal Hydraulic Performance for Plate-Fin Heat Exchanger With Offset Strip Fins
,”
Int. J. Heat Mass Transfer
,
78
, pp.
860
870
.10.1016/j.ijheatmasstransfer.2014.07.060
37.
Bala Sundar Rao
,
R.
,
Ranganath
,
G.
, and
Ranganayakulu
,
C.
,
2013
, “
Development of Colburn ‘j’ Factor and Fanning Friction Factor ‘f’ Correlations for Compact Heat Exchanger Plain Fins by Using CFD
,”
Heat Mass Transfer
,
49
(
7
), pp.
991
1000
.10.1007/s00231-013-1140-0
You do not currently have access to this content.