Heat transfer coefficients in a set of three symmetrically heated narrow gap channels arranged in line are reported at power densities of 1 kW/cm3 and wall heat flux of 3–40 W/cm2. This configuration emulates an electronics system wherein power dissipation can vary across an array of processors, memory chips, or other components. Three pairs of parallel ceramic resistance heaters in a nearly adiabatic housing form the flow passage, and length-to-gap ratios for each pair of heaters are 34 at a gap of 0.36 mm. Novec™ 7200 and 7300 are used as the heat transfer fluids. Nonuniform longitudinal power distributions are designed with the center heater pair at 1.5X and 2X the level of the first and third heater pairs. At all levels of inlet subcooling, single-phase heat transfer dominates over the first two heater pairs, while the third pair exhibits significant increases because of the presence of flow boiling. Reynolds numbers range from 250 to 1200, Weber numbers from 2 to 14, and boiling numbers from O(10−4) to O(10−3). Exit quality can reach 30% in some cases. Overall heat transfer coefficients of 40 kW/m2K are obtained. Pressure drops for both Novec™ heat transfer fluids are approximately equal at a given mass flux, and a high ratio of heat transfer to pumping power (coefficient of performance (COP)) is obtained. With a mass flux of 250 kg/m2s, heater temperatures can exceed 95 °C, which is the acceptable limit of steady operation for contemporary high performance electronics. Thus, an optimal operating point involving power density, power distribution, mass flux, and inlet subcooling is suggested by the data set for this benchmark multiheater configuration.

References

1.
Janssen
,
D. D.
,
Dixon
,
J. M.
,
Young
,
S. J.
, and
Kulacki
,
F. A.
, 2013, “
Flow Boiling in a Short Narrow Gap Channel
,”
ASME
Paper No. 2013HT-17437.
2.
Young
,
S. J.
,
Kulacki
,
F. A.
,
Janssen
,
D. D.
, and
Dixon
,
J. M.
,
2013
, “
Advanced Electronics Cooling Technology (AECT)
,” DARPA/MTO, Final Report, CDRL: A004, Contract No. N66001-11-C-4133.
3.
Bergles
,
A. E.
,
1977
, “
The Evolution of Cooling Technology for Electrical Equipment and Electronics Devices
,”
Directions of Heat Transfer in Electronic Equipment
,
A. D.
Kraus
,
A. E.
Bergles
, and
J. C.
Mollendorf
, eds.,
ASME
,
New York
.
4.
Bergles
,
A. E.
,
2003
, “
Evolution of Cooling Technology for Electrical, Electronics and Microelectronic Equipment
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
1
), pp.
6
15
.
5.
Chu
,
R. C.
,
2004
, “
The Challenge of Electronics Cooling: Past, Current and Future
,”
ASME J. Electron. Packag.
,
126
(
4
), pp.
491
500
.
6.
Sparrow
,
E. M.
,
Niethammer
,
J. E.
, and
Chaboki
,
A.
,
1982
, “
Heat Transfer and Pressure Drop Characteristics of Arrays of Rectangular Module Encountered in Electronic Equipment
,”
Int. J. Heat Mass Transfer
,
25
(
7
), pp.
961
973
.
7.
Sparrow
,
E. M.
,
Vemuri
,
S. G.
, and
Kadle
,
D. S.
,
1983
, “
Enhanced and Local Heat Transfer, Pressure Drop, and Flow Visualization for Arrays of Block-Like Electronic Components
,”
Int. J. Heat Mass Tansfer
,
26
(
5
), pp.
689
699
.
8.
Incropera
,
F. P.
,
Kerby
,
J. S.
,
Moffatt
,
D. F.
, and
Ramadhyani
,
S.
,
1986
, “
Convection Heat Transfer From Discrete Heat Sources in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
29
(
7
), pp.
1051
1058
.
9.
Kang
,
B. H.
,
Jaluria
,
Y.
, and
Tewari
,
S. S.
,
1990
, “
Mixed Convection Transport From an Isolated Heat Source Module on a Horizontal Plate
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
653
661
.
10.
Garimella
,
S. V.
, and
Eibeck
,
P. A.
,
1990
, “
Heat Transfer Characteristics of an Array of Protruding Element in Single Phase Forced Convection
,”
Int. J. Heat Mass Transfer
,
33
(
12
), pp.
2659
2669
.
11.
Garimella
,
A. V.
, and
Eibeck
,
P. A.
,
1991
, “
Enhancement of Single Phase Convective Heat Transfer From Protruding Elements Using Vortex Generators
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
2431
2433
.
12.
Morris
,
G. K.
, and
Garimella
,
S. V.
,
1997
, “
Composite Correlation for Convective Heat Transfer From Arrays of Three-Dimensional Obstacles
,”
Int. J. Heat Mass Transfer
,
40
(
2
), pp.
493
498
.
13.
Wirtz
,
R. A.
, and
Colban
,
D. M.
,
1996
, “
Comparison of the Cooling Performance of Staggered and In-Line Arrays of Electronic Packages
,”
ASME J. Electron. Packag.
,
118
(
1
), pp.
27
30
.
14.
Young
,
T. J.
, and
Vafai
,
K.
,
1998
, “
Convective Flow and Heat Transfer in a Channel Containing Multiple Heated Obstacles
,”
Int. J. Heat Mass Transfer
,
41
(
21
), pp.
3279
3298
.
15.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
, and
Jin
,
L.
,
2012
, “
Experimental Investigation of Local Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap Channel
,”
Int. J. Multiphase Flow
,
42
, pp.
164
174
.
16.
Bar-Cohen
,
A.
, and
Rahim
,
E.
,
2009
, “
Modeling and Prediction of Two-Phase Microgap Channel Heat Transfer Characteristics
,”
Heat Transfer Eng.
,
30
(
8
), pp.
601
625
.
17.
Rahim
,
E.
,
Bar-Cohen
,
A.
, and
Ali
,
I. A.
,
2012
, “
Two-Phase Microgap Cooling of a Thermally-Simulated Microprocessor Chip
,”
Proceedings of the 13th IEEE ITherm Conference
, San Diego, CA, pp.
1090
1105
.
18.
Bar-Cohen
,
A.
,
Sheehan
,
J. R.
, and
Rahim
,
E.
,
2012
, “
Two-Phase Thermal Transport in Microgap Channels—Theory, Experimental Results and Predictive Relations
,”
Microgravity Sci. Technol.
,
24
(
1
), pp.
1
15
.
19.
Alam
,
T.
,
Lee
,
P. S.
, and
Jin
,
L.-W.
,
2014
,
Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis
(Springer Brief in Thermal Engineering and Applied Science),
F. A.
Kulacki
, ed.,
Springer
,
New York
.
20.
Kenning
,
D. B. R.
,
1977
,
Nucleate Boiling in Forced Convection, in Two-Phase Flow and Heat Transfer
,
D.
Butterworth
and
G. F.
Hewitt
, eds.,
Oxford University Press
,
Oxford, UK
, pp.
153
169
.
21.
Shock
,
R. A. W.
,
1977
,
Estimation Methods for Forced Convection Boiling, in Two-Phase Flow and Heat Transfer
,
D.
Butterworth
and
G. F.
Hewitt
, eds.,
Oxford University Press
,
Oxford, UK
, pp.
200
221
.
22.
Kandlikar
,
S. G.
,
1998
, “
Heat Transfer Characteristics in Partial Boiling, Fully Developed Boiling, and Significant Void Flow Regimes of Subcooled Flow Boiling
,”
ASME J. Heat Transfer
,
120
(2), pp.
395
401
.
23.
Chisholm
,
D.
,
1967
, “
A Theoretical Basis for the Lockhart-Marginally Correlations for Two-Phase Flow
,”
Int. J. Heat Mass Transfer
,
10
(12), pp.
1767
1778
.
24.
Lockhart
,
R. W.
, and
Marginally
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal, Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
, pp.
39
48
.
25.
McAdams
,
W. H.
,
Minden
,
S. C.
,
Picornell
,
D. N.
, and
Dew
,
J. E.
,
1949
, “
Heat Transfer at High Rates to Water With Surface Boiling
,”
Ind. Eng. Chem.
,
41
(
9
), pp.
1945
1963
.
26.
Shah
,
M. M.
,
2006
, “
Evaluation of General Correlations for Heat Transfer During Boiling of Saturated Liquids in Tubes and Annulus
,”
HVACR J.
,
12
(
4
), pp.
1047
1065
.
27.
Thome
,
J. R.
,
2004
, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Fluid Flow
,
26
(
2
), pp.
128
139
.
28.
Balasubramanian
,
P.
, and
Kandlikar
,
S. G.
,
2005
, “
Experimental Study of Flow Patterns, Pressure Drop, and Flow Instabilities in Parallel Rectangular Microchannels
,”
Heat Transfer Eng.
,
26
(
3
), pp.
20
27
.
29.
Cortina Diaz
,
M.
, and
Schmidt
,
J.
,
2007
, “
Experimental Investigation of Transient Boiling in Microchannels
,”
Int. J. Heat Fluid Flow
,
28
(
1
), pp.
95
102
.
30.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Two-Phase Flow Boiling Heat Transfer Coefficient Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
219
228
.
31.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Transport Phenomena in Two-Phase Micro-Channel Heat Sinks
,”
ASME J. Electron. Packag.
,
126
(
2
), pp.
213
224
.
32.
Steinke
,
M.
, and
Kandlikar
,
S. G.
,
2004
, “
An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
518
526
.
33.
Dupont
,
V.
,
Thome
,
J. R.
, and
Jacobi
,
A. M.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels. Part II: Comparison With the Database
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3387
3401
.
34.
Thome
,
J. R.
,
Dupont
,
V.
, and
Jacobi
,
A. M.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels. Part I: Presentation of the Model
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3375
3385
.
35.
Kandlikar
,
S. G.
, and
Balasubramanian
,
P.
,
2004
, “
An Extension of the Flow Boiling Correlation to Transition, Laminar, and Deep Laminar Flows in Minichannels and Microchannels
,”
Heat Transfer Eng.
,
25
(
3
), pp.
86
93
.
36.
Hetsroni
,
G.
,
Gurevich
,
M.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
,
Rozenblit
,
R.
, and
Yarin
,
L.
,
2003
, “
Boiling in Capillary Tubes
,”
Int. J. Multiphase Flow
,
29
(
10
), pp.
1551
1563
.
37.
Bar-Cohen
,
A.
,
Geisler
,
K. J. L.
, and
Rahim
,
E.
,
2008
, “
Pool and Flow Boiling in Narrow Gaps—Application to 3D Chip Stacks
,”
5th European Thermal Sciences Conference
, G. G. M. Stoffels, T. H. van der Meer, and A. A. van Steenhoven, eds.,
Eindhoven
,
The Netherlands
.
38.
Kandlikar
,
S. G.
,
2011
,
Thermofluid Dynamics of Boiling in Microchannels, Part II: Advances in Heat Transfer
, Vol.
43
,
Y. I.
Cho
and
G. A.
Greene
, eds.,
Academic Press
,
San Diego, CA
, pp.
159
226
.
39.
Saha
,
S. K.
, and
Celata
,
G. P.
,
2011
,
Thermofluid Dynamics of Boiling in Microchannels, Part 1: Advances in Heat Transfer
, Vol.
43
Y. I.
Cho
and
G. A.
Greene
, eds.,
Academic Press
,
San Diego, CA
, pp.
77
159
.
40.
Peters
,
K. H.
, and
Kulacki
,
F. A.
,
2005
, “
Flow Boiling in Microchannels
,”
ASME
Paper No. HT2005-72036.
41.
Roesle
,
M. L.
, and
Kulacki
,
F. A.
,
2008
, “
Characteristics of Two-Component Two-Phase Flow and Heat Transfer in a Flat Microchannel
,”
ASME
Paper No. HT2008-56084.
You do not currently have access to this content.