This paper quantifies the influence of acoustic excitation of Al2O3 nanoparticles on the pool-boiling performance of R134a/polyolester mixtures on a commercial (Turbo-BII-HP) boiling surface. A nanolubricant with 10 nm diameter Al2O3 nanoparticles at a 5.1% volume fraction in the base polyolester lubricant was mixed with R134a at a 1% mass fraction. The study showed that high-frequency ultrasound at 1 MHz can improve R134a/nanolubricant boiling on a reentrant cavity surface by as much as 44%. This maximum enhancement occurred for an applied power level to the fluid of approximately 6 W and a heat flux of approximately 6.9 kW/m2. Applied power levels larger and smaller than 6 W resulted in smaller boiling heat transfer enhancements. In total, five different applied power levels were studied: 0 W, 4 W, 6 W, 8 W, and 12 W. The largest and smallest enhancement averaged over the tested heat flux range were approximately 12% and 2% for the applied power levels of 6 W and 4 W, respectively. In situ insonation at 1 MHz resulted in an improved dispersion of the nanolubricant on the test surface. An existing pool-boiling model for refrigerant/nanolubricant mixtures was modified to include the effect of acoustic excitation. For heat fluxes greater than 25 kW m−2, the model was within 4.5% of the measured heat flux ratios for mixtures, and the average agreement between measurements and predictions was approximately 1% for all power levels.

References

1.
Leong
,
T.
,
Ashokkumar
,
M.
, and
Kentish
,
S.
,
2011
, “
The Fundamentals of —A Review
,”
Acoust. Aust.
,
39
(
2
), pp.
54
63
.
2.
Kedzierski
,
M. A.
,
2011
, “
Effect of Al2O3 Nanolubricant on R134a Pool Boiling Heat Transfer
,”
Int. J. Refrig.
,
34
(
2
), pp.
498
508
.
3.
Kedzierski
,
M. A.
,
2012
, “
R134a/Al2O3 Nanolubricant Mixture Pool Boiling on a Rectangular Finned Surface
,”
ASME J. Heat Transfer
,
134
(
12
), p.
121501
.
4.
Legay
,
M.
,
Gondrexon
,
N.
,
Le Person
,
S.
,
Boldo
,
P.
, and
Bontemps
,
A.
,
2011
, “
Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances
,”
Int. J. Chem. Eng.
,
2011
, p.
670108
.
5.
Kim
,
H. Y.
,
Kim
,
Y. G.
, and
Kang
,
B. H.
,
2004
, “
Enhancement of Natural Convection and Pool Boiling Heat Transfer Via Ultrasonic Vibration
,”
Int. J. Heat Mass Transfer
,
47
(12–13), pp.
2831
2840
.
6.
Riley
,
N.
,
1998
, “
Acoustic Streaming
,”
Theor. Comput. Fluid Dyn.
,
10
(
1–4
), pp.
349
356
.
7.
Wood
,
R. W.
, and
Loomis
,
A. L.
,
1927
, “
XXXVIII. The Physical and Biological Effects of High-Frequency Sound-Waves of Great Intensity
,”
Philos. Mag. Ser. 7
,
4
(
22
), pp.
417
436
.
8.
Bonekamp
,
S.
, and
Bier
,
K.
,
1997
, “
Influence of Ultrasound on Pool Boiling Heat Transfer to Mixtures of the Refrigerants R23 and R134a
,”
Int. J. Refrig.
,
20
(
8
), pp.
606
615
.
9.
Zhou
,
D. W.
,
Liu
,
D. Y.
,
Hu
,
X. G.
, and
Ma
,
C. F.
,
2002
, “
Effect of Acoustic Cavitation on Boiling Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
26
(
8
), pp.
931
938
.
10.
Heffington
,
S.
, and
Glezer
,
A.
,
2004
, “
Enhanced Boiling Heat Transfer by Submerged Ultrasonic Vibrations
,”
10th International Workshop on Thermal Investigations of ICs and Systems
,
Sophia Antipolis
,
France
, Sept. 29–Oct. 1.
11.
Zhou
,
D. W.
, and
Liu
,
D.-Y.
,
2004
, “
Heat Transfer Characteristics of Nanofluids in an Acoustic Cavitation Field
,”
Heat Transfer Eng.
,
25
(
6
), pp.
54
61
.
12.
Zhou
,
D. W.
,
2004
, “
Heat Transfer Enhancement of Copper Nanofluid With Acoustic Cavitation
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3109
3117
.
13.
Henderson
,
K.
,
Park
,
Y.
,
Liu
,
L.
, and
Jacobi
,
A. M.
,
2010
, “
Flow-Boiling Heat Transfer of R-134a-Based Nanofluids in a Horizontal Tube
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
944
951
.
14.
Bi
,
S.
,
Shi
,
L.
, and
Zhang
,
L.
,
2007
, “
Performance Study of a Domestic Refrigerator Using R134a/Mineral Oil/Nano-TiO2 as Working Fluid
,”
International Conference of Refrigeration
, Beijing, Paper No. ICRO7-B2-346.
15.
Peng
,
H.
,
Ding
,
G.
,
Hu
,
H.
, and
Jiang
,
W.
,
2011
, “
Effect of Nanoparticle Size on Nucleate Pool Boiling Heat Transfer of Refrigerant/Oil Mixture With Nanoparticles
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1839
1850
.
16.
Hu
,
H.
,
Peng
,
H.
, and
Ding
,
G.
,
2013
, “
Nucleate Pool Boiling Heat Transfer Characteristics of Refrigerant/Nanolubricant Mixture With Surfactant
,”
Int. J. Refrig.
,
36
(
3
), pp.
1045
1055
.
17.
Kedzierski
,
M. A.
,
2009
, “
Effect of CuO Nanoparticle Concentration on R134a/Lubricant Pool-Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
4
), p.
043205
.
18.
Peng
,
H.
,
Ding
,
G.
,
Hu
,
H.
,
Jiang
,
W.
,
Zhuang
,
D.
, and
Wang
,
K.
,
2010
, “
Nucleate Pool Boiling Heat Transfer Characteristics of Refrigerant/Oil Mixture With Diamond Nanoparticles
,”
Int. J. Refrig.
,
33
(
2
), pp.
347
358
.
19.
Kedzierski
,
M. A.
, and
Gong
,
M.
,
2009
, “
Effect of CuO Nanolubricant on R134a Pool Boiling Heat Transfer With Extensive Measurement and Analysis Details
,”
Int. J. Refrig.
,
32
(
5
), pp.
791
799
.
20.
Kedzierski
,
M. A.
,
2002
, “
Use of Fluorescence to Measure the Lubricant Excess Surface Density During Pool Boiling
,”
Int. J. Refrig.
,
25
(
8
), pp.
1110
1122
.
21.
Kedzierski
,
M. A.
,
2001
, “
Use of Fluorescence to Measure the Lubricant Excess Surface Density During Pool Boiling
,” U.S. Department of Commerce, Washington, DC, Report No. NISTIR 6727.
22.
Kedzierski
,
M. A.
,
2000
, “
Enhancement of R123 Pool Boiling by the Addition of Hydrocarbons
,”
Int. J. Refrig.
,
23
(
2
), pp.
89
100
.
23.
Kedzierski
,
M. A.
, and
Fick
,
S. E.
,
2014
, “
Effect of Acoustic Excitation on R134a/Al2O3 Nanolubricant Mixture Boiling on a Reentrant Cavity Surface With Extensive Measurement and Analysis Details
,” U.S. Department of Commerce, Washington, DC, NIST Technical Note 1836.
24.
Kedzierski
,
M. A.
,
2010
, “
Effect of Al2O3 Nanolubricant on a Passively Enhanced R134a Pool Boiling Surface With Extensive Measurement and Analysis Details
,” U.S. Department of Commerce, Washington, DC, NIST Technical Note 1677.
25.
Sarkas
,
H.
,
2009
, private communications, Nanophase Technologies Corporation, Romeoville, IL.
26.
Kedzierski
,
M. A.
,
1995
, “
Calorimetric and Visual Measurements of R123 Pool Boiling on Four Enhanced Surfaces
,” U.S. Department of Commerce, Washington, DC, Report No. NISTIR 5732.
27.
Belsley
,
D. A.
,
Kuh
,
E.
, and
Welsch
,
R. E.
,
1980
,
Regression Diagnostics: Identifying Influential Data and Sources of Collinearity
,
Wiley
,
New York
.
28.
Kedzierski
,
M. A.
,
2012
, “
Effect of Diamond Nanolubricant on R134a Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051001
.
29.
Kedzierski
,
M. A.
,
2015
, “
Effect of Concentration on R134a/Al2O3 Nanolubricant Mixture Boiling on a Reentrant Cavity Surface
,”
Int. J. Refrig.
,
49
, pp.
36
38
.
30.
Collier
,
J. G.
,
1981
, “
Forced Convective Boiling
,”
Two-Phase Flow and Heat Transfer in the Power and Process Industries
,
A. E.
Bergles
,
J. G.
Collier
,
J. M.
Delhaye
,
G. F.
Hewitt
, and
F.
Mayinger
, eds.,
Hemisphere
,
New York
, p.
250
.
31.
Görtler
,
H.
,
1942
, “
Berechnung von Aufgaben der freien Turbulenz auf Grund eines neuen Naherungsansatzes
,”
Z. Angew. Math. Mech.
,
22
(
5
), pp.
244
254
.
32.
Schetz
,
J. A.
, and
Fuhs
,
A. E.
,
1999
,
Fundamentals of Fluid Mechanics
,
Wiley
,
New York
, p.
427
.
33.
Beer
,
F. P.
, and
Johnston
,
E. R.
,
1977
,
Vector Mechanics for Engineers: Dynamics
, 3rd ed.,
McGraw-Hill
,
New York
, pp.
594
598
.
34.
Kedzierski
,
M. A.
,
2003
, “
A Semi-Theoretical Model for Predicting Refrigerant/Lubricant Mixture Pool Boiling Heat Transfer
,”
Int. J. Refrig.
,
26
(
3
), pp.
337
348
.
You do not currently have access to this content.