This study concerns optimization of shapes, locations, and dimensions of internal cooling passages within a turbine vane under severe environments. The basic aim is to achieve a design that minimizes the average temperature and ensures the structural strength. Considering the prohibitive computational cost of 3D models, numerical optimization process is performed based on 2D cross-sectional models with available experimental temperature data as boundary conditions of thermomechanical analysis. To model the cooling channels, three kinds of shape configurations, i.e., circle, superellipse, and near-surface holes, are taken into account and compared. Optimization results of 2D models are obtained by using a globally convergent method of moving asymptotes (GCMMA). Furthermore, full conjugate heat transfer (CHT) analyses are made to obtain temperature distributions of 3D models extruded from 2D ones by means of shear stress transport (SST) k-ω turbulence model. It is shown that optimization of cooling passages effectively improves the thermomechanical performances of turbine vanes in comparison with those of initial C3X vane. The maximum temperature of optimized vane could be reduced up to 50 K without degrading mechanical strength.

References

1.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
AIAA J.
,
22
(2), pp.
271
285
.10.2514/1.11818
2.
Hylton
,
L. D.
,
Milhec
,
M. S.
, and
Turner
,
E. R.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surface of Turbine Vanes
,” NASA Report No. CR-168015.
3.
Bohn
,
D.
, and
Heuer
,
T.
,
2001
, “
Conjugate Flow and Heat Transfer Calculations of a High Pressure Turbine Nozzle Guide Vane
,”
AIAA
Paper No. AIAA2001-3304.10.2514/6.2001-3304
4.
Facchini
,
B.
,
Magi
,
A.
, and
Greco
,
A. S. D.
,
2004
, “
Conjugate Heat Transfer Simulation of a Radially Cooled Gas Turbine Vane
,”
ASME
Paper No. GT2004-54213. 10.1115/GT2004-54213
5.
Takahashi
,
T.
,
Watanabe
,
K.
, and
Sakai
,
T.
,
2005
, “
Conjugate Heat Transfer Analysis of a Rotor Blade With Rib-Roughened Internal Cooling Passages
,”
ASME
Paper No. GT2005-68227. 10.1115/GT2005-68227
6.
Chmielniak
,
T.
,
Wroblewski
,
W.
,
Nowak
,
G.
, and
Wecel
,
D.
,
2003
, “
Coupled Analysis of Cooled Gas Turbine Blades
,”
ASME
Paper No. GT2003-38657. 10.1115/GT2003-38657
7.
Dennis
,
B.
,
Egorov
,
I.
,
Dulicravich
,
G.
, and
Yoshimura
,
S.
,
2003
, “
Optimization of a Large Number Coolant Passages Located Close to the Surface of a Turbine Blade
,”
ASME
Paper No. GT2003-38051.10.1115/GT2003-38051
8.
Dulikravich
,
G.
,
Martin
,
T.
,
Dennis
,
B.
, and
Foster
,
N.
,
1999
, “
Multidisciplinary Hybrid Constrained GA Optimization
,”
Evolutionary Algorithms in Engineering and Computer Science: Recent Advances and Industrial Applications
,
K.
Miettinen
,
M. M.
Makela
,
P.
Neittaanmaki
, and
J.
Periaux
, eds.,
John Wiley and Sons, Jyvaskyla
,
Finland
, Chap. 12.
9.
Jeong
,
M.
,
Dennis
,
B.
, and
Yoshimura
,
S.
,
2005
, “
Multidimensional Clustering Interpretation and Its Application to Optimization of Coolant Passages of a Turbine Blade
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
215
221
.10.1115/1.1830047
10.
Martin
,
T. J.
, and
Dulikravich
,
G. S.
,
2001
, “
Aero-Thermo-Elastic Concurrent Design Optimization of Internally Cooled Turbine Blades
,”
Coupled Field Problems
,
A.
Kassab
, and
M. H.
Aliabadi
, eds.,
WIT Press
,
Southampton, UK
, Chap. 5.
11.
Muller
,
S. D.
,
Walther
,
J. H.
, and
Koumoutsakos
,
P. D.
,
2001
, “
Evolution Strategies for Film Cooling Optimization
,”
AIAA J.
,
39
(
3
), pp.
537
539
.10.2514/3.14766
12.
Nowak
,
G.
,
Wroblewski
,
W.
, and
Nowak
,
I.
,
2012
, “
Convective Cooling Optimization of a Blade for a Supercritical Steam Turbine
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4511
4520
.10.1016/j.ijheatmasstransfer.2012.03.072
13.
Nowak
,
G.
, and
Wroblewski
,
W.
,
2011
, “
Optimization of Blade Cooling System With Use of Conjugate Heat Transfer Approach
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1770
1781
.10.1016/j.ijthermalsci.2011.04.001
14.
Nowak
,
G.
, and
Nowak
,
I.
,
2012
, “
Shape Design of Internal Cooling Passages Within a Turbine Blade
,”
Eng. Optim.
,
44
(
4
), pp.
449
466
.10.1080/0305215X.2011.580742
15.
Nowak
,
G.
, and
Wroblewski
,
W.
,
2007
, “
Thermo-Mechanical Optimization of Cooled Turbine Vane
,”
ASME
Paper No. GT2007-28196. 10.1115/GT2007-28196
16.
Mangani
,
L.
,
Cerutti
,
M.
,
Maritano
,
M.
, and
Spel
,
M.
,
2010
, “
Conjugate Heat Transfer Analysis of NASA C3X Film Cooled Vane With an Object-Oriented CFD Code
,”
ASME
Paper No. GT2010-23458. 10.1115/GT2010-23458
17.
Bohn
,
D.
,
Ren
,
J.
, and
Kusterer
,
K.
,
2003
, “
Conjugate Heat Transfer Analysis for Film Cooling Configurations With Different Hole Geometries
,”
ASME
Paper No. GT2003-38369. 10.1115/GT2003-38369
18.
Favaretto
,
C. F. F.
, and
Funazaki
,
K.
,
2003
, “
Application of Genetic Algorithms to Design of an Internal Turbine Cooling System
,”
ASME
Paper No. GT2003-38408. 10.1115/GT2003-38408
19.
Talya
,
S. S.
,
Chattopadhyay
,
A.
, and
Rajadas
,
J. N.
,
2002
, “
Multidisciplinary Design Optimization Procedure for Improved Design of a Cooled Gas Turbine Blade
,”
Eng. Optim.
,
34
(
2
), pp.
175
194
.10.1080/03052150210917
20.
Dennis
,
B.
,
Egorov
,
I.
,
Dulicravich
,
G.
, and
Yoshimura
,
S.
,
2003
, “
Optimization of a Large Number Coolant Passages Located Close to the Surface of a Turbine Blade
,”
Proceedings of Turbo Expo 2003
,
Atlanta
, June 16–19, Paper No. GT2003-38051.10.1115/GT2003-38051
21.
Haasenritter
,
A.
, and
Weigand
,
B.
,
2004
, “
Optimization of the Rib Structure Inside a 2D Cooling Channel
,”
ASME
Paper No. GT2004-53187. 10.1115/GT2004-53187
22.
Kim
,
K. Y.
, and
Lee
,
Y. M.
,
2007
, “
Design Optimization of Internal Cooling Passage With V-Shaped Ribs
,”
Numer. Heat Transfer –– Part A
,
51
(
11
), pp.
1103
1118
.10.1080/10407780601112860
23.
von Wolfersdorf
,
J.
,
Achermann
,
E.
, and
Weigand
,
B.
,
1997
, “
Shape Optimization of Cooling Channels Using Genetic Algorithms
,”
ASME J. Heat Transfer
,
119
(
2
), pp.
380
388
.10.1115/1.2824239
24.
Ahmadi
,
P.
,
Hajabdollahi
,
H.
, and
Dincer
,
I.
,
2010
, “
Cost and Entropy Generation Minimization of a Cross-Flow Plate Fin Heat Exchanger Using Multi-Objective Genetic Algorithm
,”
ASME J. Heat Transfer
,
133
(
2
), p.
021801
.10.1115/1.4002599
25.
Geb
,
D.
,
Zhou
,
F.
,
Demoulin
,
G.
, and
Catton
,
I.
,
2013
, “
Genetic Algorithm Optimization of a Finned-Tube Heat Exchanger Modeled With Volume-Averaging Theory
,”
ASME J. Heat Transfer
,
135
(
8
), p.
082602
.10.1115/1.4024091
26.
Svanberg
,
K.
,
1995
, “
A Globally Convergent Version of MMA Without Linesearch
,”
Proceedings of the First World Congress of Structural and Multidisciplinary Optimization
,
Goslar, Germany
, Vol.
28
, pp.
9
16
.
27.
Holman
,
J. P.
,
1997
, “
Heat Transfer
,”
Turbulent Flow in a Tube
,
McGraw-Hill
,
New York
, Chap. 5.
28.
Radovcic
,
Y.
, and
Remouchamps
,
A.
,
2002
, “
Boss Quattro: An Open System for Parametric Design
,”
Struct. Multidiscip. Optim.
,
23
(
2
), pp.
140
152
.10.1007/s00158-002-0173-7
29.
ANSYS Inc., 2009, ANSYS
12.1 User's Manual, Canonsburg, PA.
30.
Dong
,
P.
,
2009
, “
Research on Conjugate Heat Transfer Simulation of Aeroturbine Engine Air-Cooled Vane
,” Ph.D. thesis, Harbin Institute of Technology, Harbin, China.
31.
Zheng
,
S. F.
,
Song
,
Y. D.
,
Xie
,
G. N.
, and
Sunden
,
B.
, “
An Assessment of Turbulence Models for Prediction of Conjugate Heat Transfer for a Turbine Vane With Internal Cooling Channels
,”
Heat Transfer Res.
, (in press).
You do not currently have access to this content.