This review paper documents two classes of problem to which the constructal law of design is applied. The first part of the paper is about the transport of ionic species through a porous medium by means of electrokinetics. The ionic transfer is maximized in time and in space following the principles set by the constructal law. The second part is dedicated to the search of the geometry of vertical enclosures in order to enhance the heat transfer; more complex is the discovery of the best configuration for maximum heat transfer resistance and mechanical strength through the optimal allocation of the vertical enclosures.

References

1.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
Wiley
,
New York
.
2.
Bejan
,
A.
, and
Lorente
,
S.
,
2006
, “
Constructal Theory of Generation of Flow Configuration in Nature and Engineering
,”
J. Appl. Phys.
,
100
(
4
), p.
041301
.10.1063/1.2221896
3.
Bejan
,
A.
, and
Lorente
,
S.
,
2010
, “
The Constructal Law of Design and Evolution in Nature
,”
Philos. Trans. R. Soc. B
,
365
(
1665
), pp.
1335
1347
.10.1098/rstb.2009.0302
4.
Bejan
,
A.
, and
Lorente
,
S.
,
2011
, “
The Constructal Law and the Evolution of Design in Nature
,”
Phys. Life Rev.
,
8
(
3
), pp.
209
240
.10.1016/j.plrev.2011.05.010
5.
Bejan
,
A.
, and
Lorente
,
S.
,
2013
, “
Constructal Law of Design and Evolution: Physics, Biology, Technology and Society
,”
J. Appl. Phys.
,
113
(
15
), p.
151301
.10.1063/1.4798429
6.
Rocha
,
L. A. O.
,
Isoldi
,
L. A.
,
de Vasconcellos Real
,
M.
,
Domingues dos Santos
,
E.
,
Garcia Correia
,
A. L.
,
Lorenzini
,
G.
, and
Biserni
,
C.
,
2013
, “
Constructal Design Applied to the Elastic Buckling of Thin Plates With Holes
,”
Cent. Eur. J. Eng.
,
3
(
3
), pp.
475
483
.10.2478/s13531-013-0105-x
7.
Lorenzini
,
G.
,
Biserni
,
C.
,
Bichet Link
,
F.
,
Isoldi
,
L. A.
,
Domingues dos Santos
,
E.
, and
Rocha
,
L. A. O.
,
2013
, “
Constructal Design of T-Shaped Cavity for Several Convective Fluxes Imposed at the Cavity Surfaces
,”
J. Eng. Thermophys.
,
22
(
4
), pp.
309
321
.10.1134/S1810232813040048
8.
Lorenzini
,
G.
,
Biserni
,
C.
,
da Silva Diaz Estrada
,
E.
,
Isoldi
,
L. A.
,
Domingues dos Santos
,
E.
, and
Rocha
,
L. A. O.
,
2014
, “
Constructal Design of Convective Y-Shaped Cavities by Means of Genetic Algorithm
,”
ASME J. Heat Transfer
,
136
(
7
), p.
071702
.10.1115/1.4027195
9.
Tabrizi
,
A. S.
,
Asadi
,
M.
,
Xie
,
G.
,
Lorenzini
,
G.
, and
Biserni
,
C.
,
2014
, “
Computational Fluid-Dynamics-Based Analysis of a Ball Valve Performance in Presence of Cavitation
,”
J. Eng. Thermophys.
,
23
(
1
), pp.
27
38
.10.1134/S1810232814010044
10.
Rashidi
,
I.
,
Mahian
,
O.
,
Lorenzini
,
G.
,
Biserni
,
C.
, and
Wongwises
,
S.
,
2014
, “
Natural Convection of Al2O3/Water Nanofluid in a Square Cavity: Effects of Heterogeneous Heating
,”
Int. J. Heat Mass Transfer
,
74
, pp.
391
402
.10.1016/j.ijheatmasstransfer.2014.03.030
11.
Lorente
,
S.
,
2007
, “
Constructal View of Electrokinetic Transfer Through Porous Media
,”
J. Phys. D: Appl. Phys.
,
40
(
9
), pp.
2941
2947
.10.1088/0022-3727/40/9/041
12.
Auger
,
J.
,
Yssorche-Cubaynes
,
M.-P.
,
Lorente
,
S.
,
Cussigh
,
F.
, and
Demillecamps
,
L.
,
2008
, “
Ionic Access Through Porous Media With Distributed Electrodes
,”
J. Appl. Phys.
,
104
(
8
), p.
184913
.10.1063/1.3009337
13.
Hsieh
,
S.
,
1994
,
Drug Permeation Enhancement, Theory and Applications
,
Marcel Dekker
,
New York
.
14.
Probstein
,
R. F.
, and
Hicks
,
R. E.
,
1993
, “
Removal of Contaminants From Soils by Electric Fields
,”
Science
,
260
(
5107
), pp.
498
503
.10.1126/science.260.5107.498
15.
Sogorka
,
D. B.
,
Gabert
,
H.
, and
Sogorka
,
B.
,
1998
, “
Emerging Technologies for Soils Contaminated With Metals—Electrokinetic Remediation
,”
Hazard. Ind. Waste
,
30
, pp.
673
685
.
16.
Dickinson
,
K. S.
,
Ally
,
M. R.
,
Brown
,
C. H.
,
Morris
,
M. I.
, and
Wilson-Nichols
,
M. J.
,
1995
, “
Demonstration Recommendations for Accelerated Testing of Concrete Decontamination Methods
,” DOE Report, Oak Ridge National Laboratory, Oak Ridge, TN.
17.
DePaoli
,
D. W.
,
Harris
,
M. T.
,
Morgan
,
I. L.
, and
Ally
,
M. R.
,
1997
, “
Investigation of Electrokinetic Decontamination of Concrete
,”
Separation Science and Technology
,
32
(
1–4
), pp.
387
404
.10.1080/01496399708003205
18.
Frizon
,
F.
,
Lorente
,
S.
,
Ollivier
,
J. P.
, and
Thouvenot
,
P.
,
2004
, “
Modeling the Decontamination by Electromigration of a Porous Medium
,”
J. Porous Media
,
7
(
3
), pp.
213
227
.10.1615/JPorMedia.v7.i3.50
19.
Bernier
,
M. A.
, and
Bourret
,
B.
,
1997
, “
Effects of Glass Plate Curvature on the U-Factor of Sealed Insulated Glazing Units
,”
ASHRAE Trans.
,
103
(1), pp.
270
277
.
20.
Elder
,
J. W.
,
1965
, “
Laminar Free Convection in a Vertical Slot
,”
J. Fluid Mech.
,
23
(
1
), pp.
77
98
.10.1017/S0022112065001246
21.
Lee
,
Y.
, and
Korpela
,
S. A.
,
1983
, “
Multicellular Natural Convection in a Vertical Slot
,”
J. Fluid Mech.
,
126
, pp.
91
121
.10.1017/S0022112083000063
22.
Roux
,
B.
,
Grondin
,
J.-C.
,
Bontoux
,
P.
, and
de Vahl Davis
,
G.
,
1980
, “
Reverse Transition From Multicellular to Monocellular Motion in Vertical Fluid Layer
,”
Physicochemical Hydrodynamics, 3-PCH-80, Madrid, Spain
, pp.
1
6
.
23.
Lorente
,
S.
,
2002
, “
Heat Losses Through Building Walls With Closed, Open and Deformable Cavities
,”
Int. J. Energy Res.
,
26
(
7
), pp.
611
632
.10.1002/er.807
24.
Lartigue
,
B.
,
Lorente
,
S.
, and
Bourret
,
B.
,
2000
, “
Multicellular Natural Convection in a High Aspect Ratio Cavity: Experimental and Numerical Results
,”
Int. J. Heat Mass Transfer
,
43
(
17
), pp.
3159
3170
.10.1016/S0017-9310(99)00362-2
25.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University Press
,
Cambridge, UK
.
26.
Yang
,
K. T.
,
1987
, “
Natural Convection in Enclosures
,”
Handbook of Single Phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
, Chap. 13.
27.
Bejan
,
A.
,
1980
, “
A Synthesis of Analytical Results for Natural Convection Heat Transfer Across Rectangular Enclosures
,”
Int. J. Heat Mass Transfer
,
23
(
5
), pp.
723
726
.10.1016/0017-9310(80)90017-4
28.
Frederick
,
R. L.
,
1999
, “
On the Aspect Ratio for Which the Heat Transfer in Differentially Heated Cavities is Maximum
,”
Int. Commun. Heat Mass Transfer
,
26
(
4
), pp.
549
558
.10.1016/S0735-1933(99)00041-X
29.
Bar-Cohen
,
A.
, and
Rohsenow
,
W. M.
,
1984
, “
Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates
,”
ASME J. Heat Transfer
,
106
(
1
), pp.
116
123
.10.1115/1.3246622
30.
Lorente
,
S.
, and
Lartigue
,
B.
,
2002
, “
Maximization of Heat Flow Through a Cavity With Natural Convection and Deformable Boundaries
,”
Int. Commun. Heat Mass Transfer
,
29
(
5
), pp.
633
642
.10.1016/S0735-1933(02)00382-2
31.
Lorente
,
S.
, and
Bejan
,
A.
,
2002
, “
Combined Flow and Strength Geometric Optimization: Internal Structure in a Vertical Insulating Wall With Air Cavities and Prescribed Strength
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3313
3320
.10.1016/S0017-9310(02)00052-2
32.
Bégué
,
P.
, and
Lorente
,
S.
,
2006
, “
Migration Versus Diffusion Through Porous Media: Time Dependent Scale-Analysis
,”
J. Porous Media
,
9
(
7
), pp.
637
650
.10.1615/JPorMedia.v9.i7.30
33.
Reis
,
A. H.
,
Miguel
,
A. F.
, and
Bejan
,
A.
,
2006
, “
Constructal Theory of Particle Agglomeration and Design of Air-Cleaning Devices
,”
J. Phys. D: Appl. Phys.
,
39
(
10
), pp.
2311
2318
.10.1088/0022-3727/39/10/046
34.
Miguel
,
A. F.
,
2006
, “
Constructal Pattern Formation in Stony Corals, Bacterial Colonies and Plant Roots Under Different Hydrodynamics Conditions
,”
J. Theor. Biol.
,
242
(
4
), pp.
954
961
.10.1016/j.jtbi.2006.05.010
35.
Miguel
,
A. F.
,
2007
, “
Shape and Complexity in Living Systems
,”
Along With Constructal Theory
,
A.
Bejan
,
S.
Lorente
,
A. F.
Miguel
, and
A. H.
Reis
,
Presses de l'Université de Lausanne
,
Lausanne, Switzerland
.
36.
Rubinstein
,
I.
,
1990
,
Electro-Diffusion of Ions
,
SIAM
,
Philadelphia, PA
.
37.
Wechsatol
,
W.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2002
, “
Development of Tree-Shaped Flows by Adding New Users to Existing Networks of Hot Water Pipes
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
723
733
.10.1016/S0017-9310(01)00200-9
38.
Wechsatol
,
W.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2002
, “
Optimal Tree-Shaped Networks for Fluid Flow in a Disc-Shaped Body
,”
Int. J. Heat Mass Transfer
,
45
(
25
), pp.
1643
1652
.10.1016/S0017-9310(02)00211-9
39.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2002
, “
Constructal Design for Cooling a Disc-Shaped Area by Conduction
,”
Int. J. Heat Mass Transfer
,
45
(
8
), pp.
1643
1652
.10.1016/S0017-9310(01)00269-1
40.
Zhao
,
Y.
,
Curcija
,
D.
, and
Goss
,
W. P.
,
1997
, “
Prediction of the Multicellular Flow Regime of Natural Convection in Fenestration Glazing Cavities
,”
ASHRAE Trans.
,
103
(
1
), pp.
1
12
.
41.
Bejan
,
A.
,
1995
,
Convection Heat Transfer
, 2nd ed.,
Wiley
,
New York
.
42.
Kim
,
S.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2007
, “
Vascularized Materials With Heating From One Side and Coolant Forced From the Other Side
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3498
3506
.10.1016/j.ijheatmasstransfer.2007.01.020
43.
Lee
,
J.
,
Kim
,
S.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2008
, “
Vascularization With Trees Matched Canopy to Canopy: Diagonal Channels With Multiple Sizes
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
2029
2040
.10.1016/j.ijheatmasstransfer.2007.06.015
44.
Lee
,
J.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2009
, “
Transient Cooling Response of Smart Vascular Materials for Self-Cooling
,”
J. Appl. Phys.
,
105
(
6
), p.
064904
.10.1063/1.3068323
45.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2009
, “
Tree-Shaped Vascular Wall Designs for Localized Intense Cooling
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4535
4544
.10.1016/j.ijheatmasstransfer.2009.03.003
46.
Cetkin
,
E.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2011
, “
Vascularization for Cooling and Mechanical Strength
,”
Int. J. Heat Mass Transfer
,
54
(
13–14
), pp.
2774
2781
.10.1016/j.ijheatmasstransfer.2011.02.061
47.
Cetkin
,
E.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2012
, “
Vascularization for Cooling a Plate Heated by a Randomly Moving Source
,”
J. Appl. Phys.
,
112
(
8
), p.
084906
.10.1063/1.4759290
You do not currently have access to this content.