The thermal and hydraulic performance of single-phase water-based alumina nanofluids used as coolants in liquid-cooled cold plates are reported and results baselined against those using water. Experimental results show that the heat transfer coefficient of the nanofluids increases with increasing particle loading at a fixed Reynolds number. When compared on the basis of a fixed volumetric coolant flowrate, pressure drop, and pumping power, however, no significant enhancements were observed using dilute (2%, 4%, and 6% volume fraction) alumina–water nanofluids (having an average diameter of 50 nm). In some cases, the thermal performance using nanofluids deteriorated. These results suggest that water-based alumina nanofluids do not offer a significant benefit for single-phase cooling in cold plates for the alumina nanofluids tested; yet, there remains an opportunity to identify nanoparticles—base fluid combinations that may improve performance with suggestions made herein. It should also be noted that the results reported in this study have been obtained at different degrees of dilution of a given alumina–water nanofluid having an average particle size of 50 nm.

References

1.
Eastman
,
J.
,
Choi
,
S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
.10.1063/1.1341218
2.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.10.1115/1.2825978
3.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P.
,
2006
, “
Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications
,”
Appl. Phys. Lett.
,
89
(
13
), p.
133108
.10.1063/1.2356113
4.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5181
5188
.10.1016/j.ijheatmasstransfer.2004.07.012
5.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.10.1016/S0142-727X(99)00067-3
6.
Yu
,
W.
,
France
,
D.
,
Routbort
,
J.
, and
Choi
,
S. U. S.
,
2008
, “
Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,”
Heat Transfer Eng.
,
29
(
5
), pp.
432
460
.10.1080/01457630701850851
7.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
8.
Kulkarni
,
D.
,
Vajjha
,
R.
,
Das
,
D.
, and
Oliva
,
D.
,
2008
, “
Application of Aluminum Oxide Nanofluids in Diesel Electric Generator as Jacket Water Coolant
,”
Appl. Therm. Eng.
,
28
(
14
), pp.
1774
1781
.10.1016/j.applthermaleng.2007.11.017
9.
Vajjha
,
R.
,
Das
,
D.
, and
Kulkarni
,
D.
,
2010
, “
Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21
), pp.
4607
4618
.10.1016/j.ijheatmasstransfer.2010.06.032
10.
Buongiorno
,
J.
,
Venerus
,
D.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y.
,
Keblinski
,
P.
,
Hu
,
L.-w.
,
Alvarado
,
J.
,
Bang
,
I.
,
Bishnoi
,
S.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S.
,
Chyu
,
M.
,
Das
,
S.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P.
,
Goodson
,
K.
,
Gutierrez
,
J.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K.
,
Iorio
,
C.
,
Jang
,
S.
,
Jarzebski
,
A.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M.
,
Kieng
,
L.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S.
,
Leong
,
K.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.-H.
,
Zhao
,
X.-Z.
, and
Zhou
,
S.-Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
.10.1063/1.3245330
11.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Pradeep
,
T.
,
2008
,
Nanofluids: Science and Technology
,
Wiley-Interscience
,
Hoboken, NJ
.
12.
Rea
,
U.
,
McKrell
,
T.
,
Hu
,
L.
, and
Buongiorno
,
J.
,
2009
, “
Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina–Water and Zirconia–Water Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
7
), pp.
2042
2048
.10.1016/j.ijheatmasstransfer.2008.10.025
13.
Devpura
,
A.
,
Phelan
,
P.
, and
Prasher
,
R.
,
2001
, “
Size Effects on the Thermal Conductivity of Polymers Laden With Highly Conductive Filler Particles
,”
Microscale Thermophys. Eng.
,
5
(
3
), pp.
177
189
.10.1080/108939501753222869
14.
Nan
,
C.
,
Birringer
,
R.
,
Clarke
,
D.
, and
Gleiter
,
H.
,
1997
, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
,
81
(
10
), pp.
6692
6699
.10.1063/1.365209
15.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P.
,
2005
, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
,
94
(
2
), p.
025901
.10.1103/PhysRevLett.94.025901
16.
Beck
,
M.
,
Yuan
,
Y.
,
Warrier
,
P.
, and
Teja
,
A.
,
2010
, “
The Thermal Conductivity of Alumina Nanofluids in Water, Ethylene Glycol, and Ethylene Glycol + Water Mixtures
,”
J. Nanopart. Res.
,
12
(
4
), pp.
1469
1477
.10.1007/s11051-009-9716-9
17.
Williams
,
W.
,
Buongiorno
,
J.
, and
Hu
,
L.
,
2008
, “
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042412
.10.1115/1.2818775
18.
Townsend
,
J.
, and
Christianson
,
R.
,
2009
, “
Nanofluid Properties and Their Effects on Convective Heat Transfer in an Electronics Cooling Application
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
3
), p.
031006
.10.1115/1.4001123
19.
Lee
,
J.-H.
,
Hwang
,
K.
,
Jang
,
S.
,
Lee
,
B.
,
Kim
,
J.
,
Choi
,
S. U. S.
, and
Choi
,
C.
,
2008
, “
Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
2651
2656
.10.1016/j.ijheatmasstransfer.2007.10.026
20.
Timofeeva
,
E.
,
Yu
,
W.
,
France
,
D.
,
Singh
,
D.
, and
Routbort
,
J.
,
2011
, “
Nanofluids for Heat Transfer: An Engineering Approach
,”
Nanoscale Res. Lett.
,
6
(
182
), pp.
1
7
.10.1186/1556-276X-6-182
You do not currently have access to this content.