An experimental study has been carried out to investigate the convective heat transfer and pressure drop characteristics of microencapsulated phase change material (MPCM) slurry in a coil heat exchanger (CHX). The thermal and fluid properties of the MPCM slurries were determined using a differential scanning calorimeter (DSC) and a rotating drum viscometer, respectively. The overall heat transfer coefficient and pressure drop of slurries at 4.6% and 8.7% mass fractions were measured using an instrumented CHX. A friction factor correlation for MPCM slurry in the CHX has been developed in terms of Dean number and mass fraction of the MPCM. The effects of flow velocity and mass fraction of MPCM slurry on thermal performance have been analyzed by taking into account heat exchanger effectiveness and the performance efficiency coefficient (PEC). The experimental results showed that using MPCM slurry should improve the overall performance of a conventional CHX, even though the MPCM slurries are characterized by having high viscosity.

References

1.
Charunyakorn
,
P.
,
Sengupta
,
S.
, and
Roy
,
S. K.
,
1991
, “
Forced Convection Heat Transfer in Microencapsulated Phase Change Material Slurries: Flow in Circular Ducts
,”
Int. J. Heat Mass Transfer
,
34
(
3
), pp.
819
833
.10.1016/0017-9310(91)90128-2
2.
Chen
,
B.
,
Wang
,
X.
,
Zhang
,
Y.
,
Xu
,
H.
, and
Yang
,
R.
,
2006
, “
Experimental Research on Laminar Flow Performance of Phase Change Emulsion
,”
Appl. Therm. Eng.
,
26
(
11–12
), pp.
1238
1245
.10.1016/j.applthermaleng.2005.10.040
3.
Alvarado
,
J. L.
,
March
,
C.
,
Sohn
,
C.
,
Phetteplace
,
G.
, and
Newell
,
T.
,
2007
, “
Thermal Performance of Microencapsulated Phase Change Material Slurry in Turbulent Flow Under Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1938
1952
.10.1016/j.ijheatmasstransfer.2006.09.026
4.
Sabbah
,
R.
,
Yagoobi
,
J.
, and
Hallaj
,
S. A.
,
2008
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Liquid Flow With Micro-Encapsulated Phase Change Material
,”
ASME
Paper No. HT2008-56113.10.1115/HT2008-56113
5.
Wang
,
X.
,
Niu
,
J.
,
Li
,
Y.
,
Zhang
,
Y.
,
Wang
,
X.
,
Chen
,
B.
,
Zeng
,
R.
, and
Song
,
Q.
,
2008
, “
Heat Transfer of Microencapsulated PCM Slurry Flow in Circular Tube
,”
AIChE J.
,
54
(
4
), pp.
1110
1120
.10.1002/aic.11431
6.
Yamagishi
,
Y.
,
Sugeno
,
T.
, and
Ishige
,
T.
,
1996
, “
An Evaluation of Microencapsulated PCM for Use in Cold Energy Transportation Medium
,”
31st Intersociety Energy Conversion Engineering Conference
,
Washington, DC
, Aug. 11–16, pp.
2077
2083
.
7.
Yamagishi
,
Y.
,
Takeuchi
,
H.
,
Pyatenko
,
A. T.
, and
Kayukawa
,
N.
,
1999
, “
Characteristics of Microencapsulated PCM Slurry as a Heat-Transfer Fluid
,”
AIChE J.
,
45
(
4
), pp.
696
707
.10.1002/aic.690450405
8.
Kuravi
,
S.
,
Kota
,
K.
,
Du
,
J.
, and
Chow
,
L.
,
2009
, “
Numerical Investigation of Flow and Heat Transfer Performance of Nano-Encapsulated Phase Change Material Slurry in Microchannels
,”
ASME J. Heat Transfer
,
131
(
6
), p.
062901
.10.1115/1.3084123
9.
Kuravi
,
S.
,
Du
,
J.
, and
Chow
,
L.
,
2010
, “
Encapsulated Phase Change Material Slurry Flow in Manifold Microchannels
,”
J. Thermophys. Heat Transfer
,
24
(
2
), pp.
364
373
.10.2514/1.44276
10.
Rao
,
Y.
,
Dammel
,
F.
,
Stephan
,
P.
, and
Lin
,
G.
,
2006
, “
Flow Frictional Characteristics of Microencapsulated Phase Change Material Suspensions Flowing Through Rectangular Minichannels
,”
Sci. China, Ser. E: Technol. Sci.
,
49
(
4
), pp.
445
456
.10.1007/s11431-006-0445-3
11.
Chen
,
B.
,
Wang
,
X.
,
Zeng
,
R.
,
Zhang
,
Y.
,
Wang
,
X.
, and
Niu
,
J.
,
2008
, “
An Experimental Study of Convective Heat Transfer With Microencapsulated Phase Change Material Suspension: Laminar Flow in a Circular Tube Under Constant Heat Flux
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1638
1646
.10.1016/j.expthermflusci.2008.05.008
12.
Zhang
,
G. H.
, and
Zhao
,
C. Y.
,
2011
, “
Thermal and Rheological Properties of Microencapsulated Phase Change Materials
,”
Renewable Energy
,
36
(
11
), pp.
2959
2966
.10.1016/j.renene.2011.04.002
13.
Rao
,
Y.
,
Dammel
,
F.
,
Stephan
,
P.
, and
Lin
,
G.
,
2007
, “
Convective Heat Transfer Characteristics of Microencapsulated Phase Change Material Suspensions in Minichannels
,”
Heat Mass Transfer
,
44
(
2
), pp.
175
186
.10.1007/s00231-007-0232-0
14.
Zhang
,
Y. W.
, and
Faghri
,
A.
,
1995
, “
Analysis of Forced Convection Heat Transfer in Microencapsulated Phase Change Material Suspensions
,”
J. Thermophys. Heat Transfer
,
9
(
4
), pp.
727
732
.10.2514/3.731
15.
Rennie
,
T. J.
, and
Raghavan
,
V. G. S.
,
2005
, “
Experimental Studies of a Double-Pipe Helical Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
29
(
8
), pp.
919
924
.10.1016/j.expthermflusci.2005.02.001
16.
Kumar
,
V.
,
Saini
,
S.
,
Sharma
,
M.
, and
Nigam
,
K. D. P.
,
2006
, “
Pressure Drop and Heat Transfer Study in Tube-in-Tube Helical Heat Exchanger
,”
Chem. Eng. Sci.
,
61
(
13
), pp.
4403
4416
.10.1016/j.ces.2006.01.039
17.
Mohammed
,
H. A.
, and
Narrein
,
K.
,
2012
, “
Thermal and Hydraulic Characteristics of Nanofluid Flow in a Helically Coiled Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
39
(
9
), pp.
1375
1383
.10.1016/j.icheatmasstransfer.2012.07.019
18.
Narrein
,
K.
, and
Mohammed
,
H. A.
,
2013
, “
Influence of Nanofluids and Rotation on Helically Coiled Tube Heat Exchanger Performance
,”
Thermochim. Acta
,
564
, pp.
13
23
.10.1016/j.tca.2013.04.004
19.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
20.
Dang
,
T.
,
Teng
,
J. T.
, and
Chu
,
J. C.
,
2011
, “
Influence of Gravity on the Performance Index of Microchannel Heat Exchangers-Experimental Investigations
,”
World Congress on Engineering
,
London, UK
, July 6–8, pp.
2094
2099
.
21.
Tiwari
,
A. K.
,
Ghosh
,
P.
, and
Sarkar
,
J.
,
2013
, “
Performance Comparison of the Plate Heat Exchanger Using Different Nanofluids
,”
Exp. Therm. Fluid Sci.
,
49
, pp.
141
151
.10.1016/j.expthermflusci.2013.04.012
22.
Pakdaman
,
M. F.
,
Behabadi
,
M. A. A.
, and
Razi
,
P.
,
2012
, “
An Experimental Investigation on Thermo-Physical Properties and Overall Performance of MWCNT/Heat Transfer Oil Nanofluid Flow Inside Vertical Helically Coiled Tubes
,”
Exp. Therm. Fluid Sci.
,
40
, pp.
103
111
.10.1016/j.expthermflusci.2012.02.005
23.
Yu
,
W.
,
France
,
D. M.
,
Timofeeva
,
E. V.
,
Singh
,
D.
, and
Routbort
,
J. L.
,
2010
, “
Thermophysical Property-Related Comparison Criteria for Nanofluid Heat Transfer Enhancement in Turbulent Flow
,”
Appl. Phys. Lett.
,
96
(
21
), pp.
1
3
10.1063/1.3435487.
24.
Xing
,
K. Q.
,
Tao
,
Y. X.
, and
Hao
,
Y. L.
,
2005
, “
Performance Evaluation of Liquid Flow With PCM Particles in Microchannels
,”
ASME J. Heat Transfer
,
127
(
8
), pp.
931
940
.10.1115/1.1929783
25.
Taylor
,
B. N.
, and
Kuyatt
,
C. E.
,
1994
, “
Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results
,” NIST, Gaithersburg, MD, NIST Technical Note 1297.
26.
Taherian
,
H.
,
Alvarado
,
J. L.
,
Tumuluri
,
K.
,
Thies
,
C.
, and
Park
,
C.
,
2014
, “
Fluid Flow and Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurry in Turbulent Flow
,”
ASME J. Heat Transfer
,
136
(
6
), p.
061704
.10.1115/1.4026863
27.
Kong
,
M.
,
Alvarado
,
J. L.
, and
Languri
,
E. M.
,
2013
, “
An Experimental Study of Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurry in a Coil Heat Exchanger
,”
ASME
Paper No. IMECE2013-63319.10.1115/IMECE2013-63319
28.
Alvarado
,
J. L.
,
March
,
C.
,
Sohn
,
C.
,
Vilceus
,
M.
,
Hock
,
V.
,
Phetteplace
,
G.
, and
Newell
,
T.
,
2006
, “
Characterization of Supercooling Suppression of Microencapsulated Phase Change Material by Using DSC
,”
J. Therm. Anal. Calorim.
,
86
(
2
), pp.
505
509
.10.1007/s10973-005-7430-0
29.
Zaitsau
,
D. H.
, and
Verevkin
,
S. P.
,
2013
, “
Thermodynamics of Biodiesel: Combustion Experiments in the Standard Conditions and Adjusting of Calorific Values for the Practically Relevant Range (273 to 373) K and (1 to 200) Bar
,”
J. Braz. Chem. Soc.
,
24
, pp.
1920
1925
.
30.
Yu
,
K.
,
2014
, “
Thermal Performance of Microencapsulated Phase Change Material (MPCM) Slurry in a Coaxial Heat Exchanger
,” Master's thesis, Texas A&M University, College Station, TX.
31.
Tumuluri
,
K.
,
Alvarado
,
J. L.
,
Taherian
,
H.
, and
Marsh
,
C.
,
2011
, “
Thermal Performance of a Novel Heat Transfer Fluid Containing Multiwalled Carbon Nanotubes and Microencapsulated Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5554
5567
.10.1016/j.ijheatmasstransfer.2011.07.031
You do not currently have access to this content.