Atomistic simulations of carbon nanotubes (CNTs) in a liquid environment are performed to better understand thermal transport in CNT-based nanofluids. Thermal conductivity is studied using nonequilibrium molecular dynamics (MD) methods to understand the effective conductivity of a solvated CNT combined with a novel application of Hamilton–Crosser (HC) theory to estimate the conductivity of a fluid suspension of CNTs. Simulation results show how the presence of the fluid affects the CNTs ability to transport heat by disrupting the low-frequency acoustic phonons of the CNT. A spatially dependent use of the Irving–Kirkwood relations reveals the localized heat flux, illuminating the heat transfer pathways in the composite material. Model results can be consistently incorporated into HC theory by considering ensembles of CNTs and their surrounding fluid as being present in the liquid. The simulation-informed theory is shown to be consistent with existing experimental results.

References

1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments Applications of Non-Newtonian Flows
,
ASME
,
New York
, ASME-FED-Vol. 231, pp.
99
105
.
2.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.10.1115/1.2825978
3.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.10.1016/S0142-727X(99)00067-3
4.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
.10.1063/1.1341218
5.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
), pp.
2252
2254
.10.1063/1.1408272
6.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
,
2006
, “
Heat Transfer in Nanofluids: A Review
,”
Heat Transfer Eng.
,
27
(
10
), pp.
3
19
.10.1080/01457630600904593
7.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2004
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Hamilton–Crosser Model
,”
J. Nanopart. Res.
,
6
(
4
), pp.
355
361
.10.1007/s11051-004-2601-7
8.
Leong
,
K. C.
,
Yang
,
C.
, and
Murshed
,
S. M. S.
,
2006
, “
A Model for the Thermal Conductivity of Nanofluids: The Effect of Interfacial Layer
,”
J. Nanopart. Res.
,
8
(
2
), pp.
245
254
.10.1007/s11051-005-9018-9
9.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2006
, “
Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
Proceedings of the 2006 IEEE Conference on Emerging Technologies—Nanoelectronics
,
Singapore
, Jan. 10–13, pp.
155
158
.
10.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
,
2003
, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nat. Mater.
,
2
(
11
), pp.
731
734
.10.1038/nmat996
11.
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Keblinski
,
P.
, and
Cahill
,
D.
,
2004
, “
Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites
,”
J. Appl. Phys.
,
95
(
12
), pp.
8136
8144
.10.1063/1.1736328
12.
Shenogin
,
S.
,
Bodapati
,
A.
,
Xue
,
L.
,
Ozisik
,
R.
, and
Keblinski
,
P.
,
2004
, “
Effect of Chemical Functionalization on Thermal Transport of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
,
85
(
12
), pp.
2229
2231
.10.1063/1.1794370
13.
Ikeshoji
,
T.
, and
Hafskjold
,
B.
,
1994
, “
Non-Equilibrium Molecular Dynamics Calculation of Heat Conduction in Liquid and Through Liquid–Gas Interface
,”
Mol. Phys.
,
81
(
2
), pp.
251
261
.10.1080/00268979400100171
14.
Unnikrishnan
,
V. U.
,
Banerjee
,
D.
, and
Reddy
,
J. N.
,
2008
, “
Atomistic-Mesoscale Interfacial Resistance Based Thermal Analysis of Carbon Nanotube Systems
,”
Int. J. Therm. Sci.
,
47
(
12
), pp.
1602
1609
.10.1016/j.ijthermalsci.2007.10.012
15.
Nan
,
C.-W.
,
Liu
,
G.
,
Lin
,
Y.
, and
Li
,
M.
,
2004
, “
Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
,
85
(
16
), pp.
3549
3551
.10.1063/1.1808874
16.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.
,
Zhao
,
X.
, and
Zhou
,
S.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
.10.1063/1.3245330
17.
Thomas
,
J. A.
,
Iutzi
,
R. M.
, and
McGaughey
,
A. J. H.
,
2010
, “
Thermal Conductivity and Phonon Transport in Empty and Water-Filled Carbon Nanotubes
,”
Phys. Rev. B
,
81
(
4
), p.
045413
.10.1103/PhysRevB.81.045413
18.
Plimpton
,
S. J.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
19.
Lee
,
J. W.
,
Meade
,
A. J.
, Jr.
,
Barrera
,
E. V.
, and
Templeton
,
J. A.
,
2011
, “
Dependencies of the Thermal Conductivity of Individual Single-Walled Carbon Nanotubes
,”
Proc. Inst. Mech. Eng., Part N
,
224
(
1–2
), pp.
41
54
10.1177/1740349911402422.
20.
Lee
,
J. W.
,
Nilson
,
R. H.
,
Templeton
,
J. A.
,
Griffiths
,
S. K.
,
Kung
,
A.
, and
Wong
,
B. M.
,
2012
, “
Comparison of Molecular Dynamics With Classical Density Functional and Poisson–Boltzmann Theories of the Electric Double Layer in Nanochannels
,”
J. Chem. Theory Comput.
,
8
(
6
), pp.
2012
2022
.10.1021/ct3001156
21.
Zimmerman
,
J. A.
,
Webb
,
E. B.
, III
,
Hoyt
,
J. J.
,
Jones
,
R. E.
,
Klein
,
P. A.
, and
Bammann
,
D. J.
,
2004
, “
Calculation of Stress in Atomistic Simulation
,”
Modell. Simul. Mater. Sci. Eng.
,
12
(
4
), pp.
S319
S332
.10.1088/0965-0393/12/4/S03
22.
Zimmerman
,
J. A.
,
Jones
,
R. E.
, and
Templeton
,
J. A.
,
2010
, “
A Material Frame Approach for Evaluating Continuum Variables in Atomistic Simulations
,”
J. Comput. Phys.
,
229
(
6
), pp.
2364
2389
.10.1016/j.jcp.2009.11.039
23.
Maruyama
,
S.
,
2003
, “
A Molecular Dynamics Simulation of Heat Conduction of a Finite Length Single-Walled Carbon Nanotube
,”
Microscale Thermophys. Eng.
,
7
(
1
), pp.
41
50
.10.1080/10893950390150467
24.
Padgett
,
C. W.
, and
Brenner
,
D. W.
,
2004
, “
Influence of Chemisorption on the Thermal Conductivity of Single-Wall Carbon Nanotubes
,”
Nano Lett.
,
4
(
6
), pp.
1051
1053
.10.1021/nl049645d
25.
Lukes
,
J.
, and
Zhong
,
H.
,
2007
, “
Thermal Conductivity of Individual Single-Wall Carbon Nanotubes
,”
ASME J. Heat Transfer
,
129
(
6
), pp.
705
716
.10.1115/1.2717242
26.
Sokhan
,
V. P.
,
Nicholson
,
D.
, and
Quirke
,
N.
,
2000
, “
Phonon Spectra in Model Carbon Nanotubes
,”
J. Chem. Phys.
,
113
(
5
), pp.
2007
2015
.10.1063/1.482007
27.
Mingo
,
N.
, and
Broido
,
D. A.
,
2005
, “
Length Dependence of Carbon Nanotube Thermal Conductivity and the ‘Problem of Long Waves'
,”
Nano Lett.
,
5
(
7
), pp.
1221
1225
.10.1021/nl050714d
28.
Mingo
,
N.
, and
Broido
,
D. A.
,
2005
, “
Carbon Nanotube Ballistic Thermal Conductance and Its Limits
,”
Phys. Rev. Lett.
,
95
(
9
), p.
096105
.10.1103/PhysRevLett.95.096105
29.
Irving
,
J. H.
, and
Kirkwood
,
J. G.
,
1950
, “
The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics
,”
J. Chem. Phys.
,
18
(
6
), pp.
817
829
.10.1063/1.1747782
30.
Kapitza
,
P. L.
,
1967
, “
The Study of Heat Transfer in Helium II
,”
Collected Papers of P.L. Kapitza
, Vol.
II
,
D.
ter Haar
, ed.,
Pergamon Press
,
Oxford, UK
.
You do not currently have access to this content.