Boiling heat transfer enhancement via compound effect of the electrohydrodynamic (EHD) effect and microstructured surfaces has been experimentally and analytically investigated. A fluorinated dielectric liquid (Asahi Glass Co., Ltd., AE-3000) was selected as the working fluid. Pool boiling heat transfer in the saturated liquid was measured at atmospheric pressure. Microstructured surfaces, which are mainly used for cutting tools, were developed with diamond particles using electrodeposition technique. Four different particle diameters were prepared: 5, 10, 15, and a mixture of 5 and 1.5 μm. The critical heat flux (CHF) for diamond particle surfaces showed 27–30 W/cm2 which was 26–40% increase for comparing with a noncoated surface (21.5 W/cm2). Upon application of a −5 kV/mm electric field to the microstructured surface (a mixture of 5 and 1.5 μm particles), a CHF of 70.2 W/cm2 at a superheat of 21.7 K was obtained. The previous theoretical equation of pool boiling predicted the CHF with electric field and without the electrode within 10%. Also, the CHF enhanced by the diamond coated surfaces was correlated well with the contact angle.

References

1.
Zuber
,
N.
,
1958
, “
On the Stability of Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
80
, pp.
711
720
.
2.
Lüttch
,
T.
,
Marquardt
,
W.
,
Buchholz
,
M.
, and
Auracher
,
H.
,
2004
, “
Towards a Unifying Heat Transfer Correlation for the Entire Boiling Curve
,”
Int. J. Therm. Sci.
,
43
(
12
), pp.
1125
1139
.10.1016/j.ijthermalsci.2004.04.014
3.
Stuetzer
,
O. M.
,
1959
, “
Ion Drag Pressure Generation
,”
J. Appl. Phys.
,
30
(
7
), pp.
984
994
.10.1063/1.1777003
4.
Pickard
,
W. F.
,
1963
, “
Ion-Drag Pumping. I. Theory
,”
J. Appl. Phys.
,
34
(
2
), pp.
246
250
.10.1063/1.1702592
5.
Pickard
,
W. F.
,
1963
, “
Ion-Drag Pumping. II. Experiment
,”
J. Appl. Phys.
,
34
(
2
), pp.
251
258
.10.1063/1.1702593
6.
Jones
,
T. B.
,
1978
, “
Electrohydrodynamically Enhanced Heat Transfer in Liquids—A Review
,”
Adv. Heat Transfer
,
14
, pp.
107
148
.10.1016/S0065-2717(08)70086-8
7.
Marco
,
D. P.
, and
Grassi
,
W.
,
1993
, “
Saturated Pool Boiling Enhancement by Means of an Electric Field
,”
J. Enhanced Heat Transfer
,
1
(
1
), pp.
99
114
.10.1615/JEnhHeatTransf.v1.i1.90
8.
Allen
,
P. H. G.
, and
Karayiannis
,
T. G.
,
1994
, “
Electrohydrodynamic Enhancement of Heat Transfer and Fluid Flow
,”
Heat Recovery Syst. CHP
,
15
(
5
), pp.
389
423
.10.1016/0890-4332(95)90050-0
9.
Laohalertdecha
,
S.
,
Naphon
,
P.
, and
Wongwises
,
S.
,
2007
, “
A Review of Electrohydrodynamic Enhancement of Heat Transfer
,”
Renewable Sustainable Energy Rev.
,
11
(
5
), pp.
858
876
.10.1016/j.rser.2005.07.002
10.
Hristov
,
Y.
,
Zhao
,
D.
,
Kenning
,
D. B. R.
,
Sefiane
,
K.
, and
Karayiannis
,
T. G.
,
2009
, “
A Study of Nucleate Boiling and Critical Heat Flux With EHD Enhancement
,”
Heat Mass Transfer
,
45
(
7
), pp.
999
1017
.10.1007/s00231-007-0286-z
11.
Saville
,
D. A.
,
1997
, “
Electrohydrodynamics: The Taylor-Melcher Leaky Dielectric Model
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
27
64
.10.1146/annurev.fluid.29.1.27
12.
Atten
,
P.
, and
Seyed-Yagoobi
,
J.
,
2003
, “
Electrohydrodynamically Induced Dielectric Liquid Flow Through Pure Conduction in Point/Plane Geometry
,”
IEEE Trans. Dielectr. Electr. Insul.
,
10
(
1
), pp.
27
36
.10.1109/TDEI.2003.1176555
13.
Seyed-Yagoobi
,
J.
,
2005
, “
Electrohydrodynamic Pumping of Dielectric Liquids
,”
J. Electrost.
,
63
(
6–10
), pp.
861
869
.10.1016/j.elstat.2005.03.047
14.
Landau
,
L. D.
,
Lifshitz
,
E. M.
, and
Pitaevskii
,
L. P.
,
1984
,
Electrohydrodynamics of Continuous Media
, 2nd ed., Vol.
8
,
Butterworth-Heineman
,
Oxford, UK
, pp.
59
64
.
15.
Kano
,
I.
,
Takahashi
,
I.
, and
Nishina
,
T.
,
2009
, “
Effects of Moisture Content in a Dielectric Liquid on Electrohydrodynamic Pumping
,”
IEEE Trans. Ind. Appl.
,
45
(
1
), pp.
59
66
.10.1109/TIA.2008.2009610
16.
Kano
,
I.
, and
Nishina
,
T.
,
2010
, “
Electrode Arrangement for Micro-Scale Electrohydrodynamic Pumping
,”
J. Fluid Sci. Technol.
,
5
(
2
), pp.
123
134
.10.1299/jfst.5.123
17.
Jones
,
T. B.
,
1995
,
Electromechanics of Particles
,
Cambridge University Press
,
New York
, pp.
24
30
.
18.
Panofsky
,
W. K. H.
,
1962
,
Classical Electricity and Magnetism
, 2nd ed.,
Dover Publications
,
New York
, pp.
111
116
.
19.
Kano
,
I.
,
2014
, “
Effect of Electric Field Distribution Generated in a Microspace on Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
136
(
10
), p.
101501
.10.1115/1.4027881
20.
Darabi
,
J.
,
Ohadi
,
M. M.
, and
DeVoe
,
D.
,
2001
, “
An Electrohydrodynamic Polarization Micropump for Electronic Cooling
,”
J. Microelectromech. Syst.
,
10
(
1
), pp.
98
106
.10.1109/84.911097
21.
Darabi
,
J.
, and
Ekula
,
K.
,
2003
, “
Development of a Chip-Integrated Micro Cooling Device
,”
Microelectron. J.
,
34
(
11
), pp.
1067
1074
.10.1016/j.mejo.2003.09.010
22.
Moghaddam
,
S.
, and
Ohadi
,
M. M.
,
2005
, “
Effect of Electrode Geometry on Performance of an EHD Thin-Film Evaporator
,”
J. Microelectromech. Syst.
,
14
(
5
), pp.
978
986
.10.1109/JMEMS.2005.851812
23.
Kano
,
I.
,
Higuchi
,
Y.
, and
Chika
,
T.
,
2013
, “
Development of Boiling Type Cooling System Using Electrohydrodynamics Effect
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091301
.10.1115/1.4024390
24.
Lamb
,
H.
,
1932
,
Hydrodynamics
, 6th ed.,
Cambridge University Press
,
Cambridge, UK
.
25.
O'Connor
,
J. P.
,
You
,
S. M.
, and
Price
,
D. C.
,
1995
, “
A Dielectric Surface Coating Technique to Enhance Boiling Heat Transfer From High Power Microelectronics
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part A
,
18
(
3
), pp.
656
663
.10.1109/95.465166
26.
Das
,
A. K.
,
Das
,
P. K.
, and
Saha
,
P.
,
2007
, “
Nucleate Boiling of Water From Plain and Structured Surfaces
,”
Exp. Therm. Fluid Sci.
,
31
(
8
), pp.
967
977
.10.1016/j.expthermflusci.2006.10.006
27.
Tong
,
L. S.
, and
Tang
,
Y. S.
,
1997
,
Boiling Heart Transfer and Two-Phase Flow
, 2nd ed.,
Taylor & Francis
,
New York
, pp.
37
40
.
28.
Auracher
,
H.
, and
Marquardt
,
W.
,
2004
, “
Heat Transfer Characteristics and Mechanisms Along Entire Boiling Curves Under Steady-State and Transient Conditions
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
223
242
.10.1016/j.ijheatfluidflow.2003.11.011
You do not currently have access to this content.