A new way was proposed to enhance the interfacial thermal conductance (ITC) of silicon carbide (SiC) composite through the overlapped carbon nanotubes (CNTs) and intertube atoms. By nonequilibrium molecular dynamics (NEMD) simulations, the dependence of ITC on both the number of intertube atoms and the temperature was studied. It is indicated that the ITC can be significantly enhanced by adding intertube atoms and finally becomes saturated with the increase of the number of intertube atoms. And the mechanism is discussed by analyzing the probability distributions of atomic forces and vibrational density of states (VDOS). This work may provide some guidance on enhancing the ITC of CNT-based composites.
References
1.
Chelnokov
, V.
, and Syrkin
, A.
, 1997
, “High Temperature Electronics Using SiC: Actual Situation and Unsolved Problems
,” Mater. Sci. Eng., B
, 46
(1
), pp. 248
–253
.2.
Sarro
, P. M.
, 2000
, “Silicon Carbide as a New MEMS Technology
,” Sens. Actuators, A
, 82
(1
), pp. 210
–218
.3.
Weitzel
, C. E.
, Palmour
, J. W.
, Carter
, C. H.
, Jr., Moore
, K.
, Nordquist
, K. J.
, Allen
, S.
, Thero
, C.
, and Bhatnagar
, M.
, 1996
, “Silicon Carbide High-Power Devices
,” IEEE Trans. Electron Devices
, 43
(10
), pp. 1732
–1741
.4.
Verrall
, R.
, Vlajic
, M.
, and Krstic
, V.
, 1999
, “Silicon Carbide as an Inert-Matrix for a Thermal Reactor Fuel
,” J. Nucl. Mater.
, 274
(1
), pp. 54
–60
.5.
Möslang
, A.
, and Wiss
, T.
, 2006
, “Materials for Energy: From Fission Towards Fusion
,” Nat. Mater.
, 5
(9
), pp. 679
–680
.6.
Kawamura
, T.
, Hori
, D.
, Kangawa
, Y.
, Kakimoto
, K.
, Yoshimura
, M.
, and Mori
, Y.
, 2008
, “Thermal Conductivity of SiC Calculated by Molecular Dynamics
,” Jpn. J. Appl. Phys.
, 47
(12
), pp. 8898
–8901
.7.
Casady
, J.
, and Johnson
, R. W.
, 1996
, “Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review
,” Solid-State Electron.
, 39
(10
), pp. 1409
–1422
.8.
Cahill
, D. G.
, Ford
, W. K.
, Goodson
, K. E.
, Mahan
, G. D.
, Majumdar
, A.
, Maris
, H. J.
, Merlin
, R.
, and Phillpot
, S. R.
, 2003
, “Nanoscale Thermal Transport
,” J. Appl. Phys.
, 93
(2
), pp. 793
–818
.9.
Hu
, L.
, Zhang
, L.
, Hu
, M.
, Wang
, J.-S.
, Li
, B.
, and Keblinski
, P.
, 2010
, “Phonon Interference at Self-Assembled Monolayer Interfaces: Molecular Dynamics Simulations
,” Phys. Rev. B
, 81
(23
), p. 235427
.10.
Zhang
, L.
, Keblinski
, P.
, Wang
, J.-S.
, and Li
, B.
, 2011
, “Interfacial Thermal Transport in Atomic Junctions
,” Phys. Rev. B
, 83
(6
), p. 064303
.11.
Hopkins
, P. E.
, Duda
, J. C.
, Petz
, C. W.
, and Floro
, J. A.
, 2011
, “Controlling Thermal Conductance Through Quantum Dot Roughening at Interfaces
,” Phys. Rev. B
, 84
(3
), p. 035438
.12.
Chalopin
, Y.
, Esfarjani
, K.
, Henry
, A.
, Volz
, S.
, and Chen
, G.
, 2012
, “Thermal Interface Conductance in Si/Ge Superlattices by Equilibrium Molecular Dynamics
,” Phys. Rev. B
, 85
(19
), p. 195302
.13.
Tian
, Z.
, Esfarjani
, K.
, and Chen
, G.
, 2012
, “Enhancing Phonon Transmission Across a Si/Ge Interface by Atomic Roughness: First-Principles Study With the Green's Function Method
,” Phys. Rev. B
, 86
(23
), p. 235304
.14.
Luo
, T.
, and Chen
, G.
, 2013
, “Nanoscale Heat Transfer—From Computation to Experiment
,” Phys. Chem. Chem. Phys.
, 15
(10
), pp. 3389
–3412
.15.
Hopkins
, P. E.
, 2013
, “Thermal Transport Across Solid Interfaces With Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance
,” ISRN Mech. Eng.
, 2013
, p. 682586
.16.
Li
, M.
, Zhang
, J.
, Hu
, X.
, and Yue
, Y.
, 2015
, “Thermal Transport Across Graphene/SiC Interface: Effects of Atomic Bond and Crystallinity of Substrate
,” Appl. Phys. A
, 119
(2
), pp. 415
–424
.17.
Yang
, N.
, Luo
, T.
, Esfarjani
, K.
, Henry
, A.
, Tian
, Z.
, Shiomi
, J.
, Chalopin
, Y.
, Li
, B.
, and Chen
, G.
, 2015
, “Thermal Interface Conductance Between Aluminum and Silicon by Molecular Dynamics Simulations
,” J. Comput. Theor. Nanosci.
, 12
(2
), pp. 168
–174
.18.
Zhou
, Y.
, Zhang
, X.
, and Hu
, M.
, 2016
, “An Excellent Candidate for Largely Reducing Interfacial Thermal Resistance: A Nano-Confined Mass Graded Interface
,” Nanoscale
, 8
(4
), pp. 1994
–2002
.19.
Kim
, P.
, Shi
, L.
, Majumdar
, A.
, and McEuen
, P. L.
, 2001
, “Thermal Transport Measurements of Individual Multiwalled Nanotubes
,” Phys. Rev. Lett.
, 87
(21
), p. 215502
.20.
Liao
, Q.
, Liu
, Z.
, Liu
, W.
, Deng
, C.
, and Yang
, N.
, 2015
, “Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites
,” Sci. Rep.
, 5
, p. 16543
.21.
Hone
, J.
, Whitney
, M.
, Piskoti
, C.
, and Zettl
, A.
, 1999
, “Thermal Conductivity of Single-Walled Carbon Nanotubes
,” Phys. Rev. B
, 59
(4
), pp. R2514
–R2516
.22.
Berber
, S.
, Kwon
, Y.-K.
, and Tománek
, D.
, 2000
, “Unusually High Thermal Conductivity of Carbon Nanotubes
,” Phys. Rev. Lett.
, 84
(20
), pp. 4613
–4616
.23.
Kuang
, Y.
, and Huang
, B.
, 2015
, “Effects of Covalent Functionalization on the Thermal Transport in Carbon Nanotube/Polymer Composites: A Multi-Scale Investigation
,” Polymer
, 56
, pp. 563
–571
.24.
De Volder
, M.
, Tawfick
, S.
, Baughman
, R.
, and Hart
, A.
, 2013
, “Carbon Nanotubes: Present and Future Commercial Applications
,” Science
, 339
(6119
), pp. 535
–539
.25.
Dresselhaus
, M. S.
, Dresselhaus
, G.
, and Eklund
, P. C.
, 1996
, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications
, Academic Press
, San Diego, CA
.26.
Hu
, M.
, Keblinski
, P.
, Wang
, J.-S.
, and Raravikar
, N.
, 2008
, “Interfacial Thermal Conductance Between Silicon and a Vertical Carbon Nanotube
,” J. Appl. Phys.
, 104
(8
), p. 083503
.27.
Bao
, H.
, Shao
, C.
, Luo
, S.
, and Hu
, M.
, 2014
, “Enhancement of Interfacial Thermal Transport by Carbon Nanotube-Graphene Junction
,” J. Appl. Phys.
, 115
(5
), p. 053524
.28.
Diao
, J.
, Srivastava
, D.
, and Menon
, M.
, 2008
, “Molecular Dynamics Simulations of Carbon Nanotube/Silicon Interfacial Thermal Conductance
,” J. Chem. Phys.
, 128
(16
), p. 164708
.29.
Veedu
, V. P.
, Cao
, A.
, Li
, X.
, Ma
, K.
, Soldano
, C.
, Kar
, S.
, Ajayan
, P. M.
, and Ghasemi-Nejhad
, M. N.
, 2006
, “Multifunctional Composites Using Reinforced Laminae With Carbon-Nanotube Forests
,” Nat. Mater.
, 5
(6
), pp. 457
–462
.30.
Minus
, M. L.
, Chae
, H. G.
, and Kumar
, S.
, 2012
, “Polyethylene Crystallization Nucleated by Carbon Nanotubes Under Shear
,” ACS Appl. Mater. Interfaces
, 4
(1
), pp. 326
–330
.31.
Yu
, K.
, Lee
, J. M.
, Kim
, J.
, Kim
, G.
, Kang
, H.
, Park
, B.
, Ho Kahng
, Y.
, Kwon
, S.
, Lee
, S.
, Lee
, B. H.
, Park
, H. I.
, Kim
, S. O.
, and Lee
, K.
, 2014
, “Semiconducting Polymers With Nanocrystallites Interconnected Via Boron-Doped Carbon Nanotubes
,” Nano Lett.
, 14
(12
), pp. 7100
–7106
.32.
Jin
, C.
, Suenaga
, K.
, and Iijima
, S.
, 2008
, “Plumbing Carbon Nanotubes
,” Nat. Nanotechnol.
, 3
(1
), pp. 17
–21
.33.
Plimpton
, S.
, 1995
, “Fast Parallel Algorithms for Short-Range Molecular Dynamics
,” J. Comput. Phys.
, 117
(1
), pp. 1
–19
.34.
Tersoff
, J.
, 1989
, “Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems
,” Phys. Rev. B
, 39
(8
), pp. 5566
–5568
.35.
Tersoff
, J.
, 1994
, “Chemical Order in Amorphous Silicon Carbide
,” Phys. Rev. B
, 49
(23
), p. 16349
.36.
Maruyama
, S.
, 2002
, “A Molecular Dynamics Simulation of Heat Conduction in Finite Length SWNTs
,” Physica B
, 323
(1–4
), pp. 193
–195
.37.
Zhang
, G.
, and Li
, B.
, 2005
, “Thermal Conductivity of Nanotubes Revisited: Effects of Chirality, Isotope Impurity, Tube Length, and Temperature
,” J. Chem. Phys.
, 123
(11
), p. 114714
.38.
Cui
, L.
, Feng
, Y.
, Tan
, P.
, and Zhang
, X.
, 2015
, “Heat Conduction in Double-Walled Carbon Nanotubes With Intertube Additional Carbon Atoms
,” Phys. Chem. Chem. Phys.
, 17
(25
), pp. 16476
–16482
.Copyright © 2017 by ASME
You do not currently have access to this content.