This paper presents the results from computational fluid dynamics (CFD) simulations of heat and mass transfer of pure vapor flowing and condensing in a vertical cylindrical condenser system at various inlet temperatures, mass flow rates, and operating pressure for the case where the vapor condensation is not completed inside the condenser tube. The heat and mass transfer inside the condenser tube is simulated as single phase flow, and the thin condensate film on the condensing surface is replaced by a set of boundary conditions that couple the CFD simulations inside the condenser tube and the coolant channel. The CFD results are compared with the experimental results, and good agreement has been found for the various measured temperatures. It is found that both the wall temperature and the heat flux vary significantly along the condenser tube, and it is necessary to consider the conjugate problem that consists of the whole condenser system (condenser plus coolant flow) in predicting the pure vapor condensation in a condensing system. The CFD results show that the heat flux along the condenser tube can be increasing for counter-flow condenser, and the condensate film may not be the main limiting factor in the pure vapor condensation. The results from the CFD simulations also show that the estimation of the interface shear stress cannot be based on the bulk velocity of the water vapor alone.

References

1.
Nusselt
,
W.
,
1916
, “
Des Oberflachenkondensation des Wasserdamfes
,”
Z. Ver. Dtsch. Ing.
,
60
, pp.
569
575
.
2.
Rohsenow
,
W. J.
,
1956
, “
Heat Transfer and Temperature Distribution in Laminar Film Condensation
,”
Trans. ASME
,
78
, pp.
1645
1648
.
3.
Brauer
,
H.
,
1956
,
Stromung und Warmeubergang bei Reiselflmen
, Vol.
22
, The Association of German Engineers (VDI), Düsseldorf, Germany, pp.
1
40
.
4.
Kutateladze
,
S. S.
,
1982
, “
Semi-Empirical Theory of Film Condensation of Pure Vapors
,”
Int. J. Heat Mass Transfer
,
25
(
5
), pp.
653
660
.
5.
Labuntsov
,
D. A.
,
1957
, “
Heat Transfer in Film Condensation of Pure Steam on Vertical Surfaces and Horizontal Tubes
,”
Teploenergetika
,
4
, pp.
72
80
.
6.
Chun
,
K. R.
, and
Seban
,
R. A.
,
1971
, “
Heat Transfer to Evaporating Liquid Film
,”
ASME J. Heat Transfer
,
93
(
4
), pp.
391
396
.
7.
Butterworth
,
D.
,
1983
, “
Film Condensation of Pure Vapor
,”
Heat Exchanger Handbook
,
Hemisphere
,
Washington, DC
.
8.
Blangetti
,
F.
, and
Schlunder
,
E. U.
,
1978
, “
Local Heat Transfer Coefficient of Condensation in a Vertical Tube
,”
6th International Heat Transfer Conference
, Vol.
2
, pp.
437
442
.
9.
Chen
,
L. S.
,
Gerner
,
F. M.
, and
Tien
,
C. L.
,
1987
, “
General Film Condensation Correlations
,”
Exp. Heat Transfer
,
1
(2), pp.
93
107
.
10.
Kuhn
,
S. Z.
,
1995
, “
Investigation of Heat Transfer From Condensation Steam-Gas Mixture and Turbulent Films Flowing Downward Inside a Vertical Tube
,” Ph.D. thesis, University of California, Berkeley, CA.
11.
Rohsenow
,
W. J.
,
1973
, “
Condensation
,”
Handbook of Heat Transfer
,
McGraw-Hill
,
New York
, pp.
77
104
.
12.
Faghri
,
A.
,
1986
, “
Turbulent Film Condensation in a Tube With Concurrent and Counter Current Vapor Flow
,”
4th Thermophysics and Heat Transfer Conference, Fluid Dynamics and Co-located Conferences
, Boston, MA, June 2–4.
13.
Faghri
,
A.
,
Chen
,
M. M.
, and
Morgan
,
M.
,
1989
, “
Heat Transfer Characteristics in Two-Phase Closed Conventional and Concentric Annular Thermosyphons
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
611
618
.
14.
Harley
,
C.
, and
Faghri
,
A.
,
1994
, “
Transitent Two-Dimensional Gas-Loaded Heat Pipe Analysis
,”
ASME J. Heat Transfer
,
116
(
3
), pp.
716
723
.
15.
Faghri
,
A.
, and
Zhang
,
Y. W.
,
2006
,
Transport Phenomena in Multiphase System
,
Elsevier
, Amsterdam, The Netherlands.
16.
Rohsenow
,
W. J.
,
Webber
,
J. H.
, and
Lin
,
T.
,
1956
, “
Effect of Vapor Velocity on Laminar and Turbulent Film Condensation
,”
Trans. ASME
,
78
, pp.
1637
1643
.
17.
Li
,
J. D.
,
Saraireh
,
M.
, and
Thorpe
,
G.
,
2011
, “
Condensation of Vapor in the Presence of Non-Condensable Gas in Condensers
,”
Int. J. Heat Mass Transfer
,
54
(17–18), pp.
4078
4089
.
18.
Saraireh
,
S.
,
Thorpe
,
G.
, and
Li
,
J. D.
,
2011
, “
Simulation of Heat and Mass Transfer Involving Condensation in the Presence of Non-Condensable Gases in Plane Channels
,”
ASME
Paper No. AJTEC2011-44138.
19.
Li
,
J. D.
,
2013
, “
CFD Simulation of Water Vapor Condensation in the Presence of Non-Condensable Gas in Vertical Cylindrical Condensers
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
708
721
.
20.
Phan
,
L.
,
Wang
,
X.
, and
Narain
,
A.
,
2006
, “
Effects of Exit-Condition, Gravity, and Surface-Tension on Stability and Noise-Sensitivity Issues for Steady Condensing Flows Inside Tubes and Channels
,”
Int. J. Heat Mass Transfer
,
49
(
13–14
), pp.
2058
2076
.
21.
Naik
,
R.
,
Narain
,
A.
, and
Mitra
,
S.
,
2016
, “
Steady and Unsteady Simulations for Annular Internal Condensing Flows—Part I: Algorithm and Its Accuracy
,”
Numer. Heat Transfer, Part B
,
69
(
6
), pp.
473
494
.
22.
Naik
,
R.
, and
Narain
,
A.
,
2016
, “
Steady and Unsteady Simulations for Annular Internal Condensing Flows—Part II: Instability and Flow Regime Transitions
,”
Numer. Heat Transfer, Part B
,
69
(
6
), pp.
495
510
.
23.
Pope
,
S.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, New York.
24.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2015
,
Thermodynamics: An Engineering Approach
, 8th ed.,
McGraw-Hill
,
New York
.
25.
Narain
,
A.
,
Naik
,
R.
,
Ravikumar
,
S.
, and
Bhasme
,
S.
,
2015
, “
Fundamental Assessments and New Enabling Proposals for Heat Transfer Correlations and Flow Regime Maps for Shear Driven Condensers in the Annular/Stratified Regime
,”
J. Therm. Eng.
,
1
(
4
), pp.
307
321
.
You do not currently have access to this content.