In the present study, an experimental investigation has been carried out to analyze the heat transfer characteristics of CuO–water nanofluids jet on a hot surface. A rectangular stainless steel foil (AISI-304, 0.15 mm thick) used as the test surface is electrically heated to obtain the required initial temperature (500 °C). The distribution of surface heat flux on the target surface is evaluated from the recorded thermal images during transient cooling. The effect of nanoparticle concentration and Reynolds number of the nanofluids on the heat transfer characteristics is studied. Tests are performed for varied range of Reynolds number (5000 ≤ Re ≤ 12,000), two different CuO–water nanofluids concentration (Ф = 0.15%, 0.6%) and two different nozzle to plate distance (l/d = 6, 12). The enhancement in Nusselt number for CuO–water nanofluids was found to be 14% and 90%, for nanofluids concentration of Ф = 0.15% and Ф = 0.60%, respectively, compared to pure water. The test surface characteristics after nanofluids jet impingement are studied using scanning electron microscope (SEM). Based on the investigation, a correlation among various parameters, namely, Reynolds number (Re), Prandtl number (Pr), nozzle to plate distance (l/d), and Nusselt number (Nu), is presented.

References

1.
Karwa
,
N.
,
Gambaryan-Roisman
,
T.
,
Stephan
,
P.
, and
Tropea
,
C.
,
2011
, “
Experimental Investigation of Circular Free-Surface Jet Impingement Quenching: Transient Hydrodynamics and Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1435
1443
.
2.
Mozumder
,
A. K.
,
Woodfield
,
P. L.
,
Islam
,
M. A.
, and
Monde
,
M.
,
2007
, “
Maximum Heat Flux Propagation Velocity During Quenching by Water Jet Impingement
,”
Int. J. Heat Mass Transfer
,
50
(
7–8
), pp.
1559
1568
.
3.
Miyasaka
,
Y.
, and
Inada
,
S.
,
1980
, “
The Effect of Pure Forced Convection on the Boiling Heat Transfer Between a Two-Dimensional Subcooled Water Jets and a Heated Surface
,”
J. Chem. Eng. Jpn.
,
13
(
1
), pp.
22
28
.
4.
Yousefi
,
T.
,
Shojaeizadeh
,
E.
,
Mirbagheri
,
H. R.
,
Farahbaksh
,
B.
, and
Saghir
,
M. Z.
,
2013
, “
An Experimental Investigation on the Impingement of a Planar Jet of Al2O3—Water Nanofluid on a V-Shaped Plate
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
114
126
.
5.
Mozumder
,
A. K.
,
Monde
,
M.
, and
Woodfield
,
P. L.
,
2005
, “
Delay of Wetting Propagation During Jet Impingement Quenching for a High Temperature Surface
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5395
5407
.
6.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
(
6
), pp.
565
631
.
7.
Hatta
,
N.
,
Kokado
,
J. I.
, and
Hanasaki
,
K.
,
1983
, “
Numerical Analysis of Cooling Characteristics for Water Bar
,”
Trans. Iron Steel Inst. Jpn.
,
23
(
7
), pp.
555
564
.
8.
Woodfield
,
P. L.
,
Mozumder
,
A. K.
, and
Monde
,
M.
,
2009
, “
On the Size of the Boiling Region in Jet Impingement Quenching
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
460
465
.
9.
Agrawal
,
C.
,
Kumar
,
R.
,
Gupta
,
A.
, and
Chatterjee
,
B.
,
2014
, “
Effect of Jet Diameter on Surface Quenching at Different Spatial Locations
,”
Int. J. Mech., Aerosp., Ind. Mechatronic Manuf. Eng.
,
8
(
1
), pp.
19
22
.http://waset.org/publications/9997005/effect-of-jet-diameter-on-surface-quenching-at-different-spatial-locations
10.
Xu
,
F.
, and
Gadala
,
M. S.
,
2006
, “
Heat Transfer Behavior in the Impingement Zone Under Circular Water Jet
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
3785
3799
.
11.
Ueda
,
T.
,
Tsunenari
,
S.
, and
Koyanagi
,
M.
,
1983
, “
An Investigation of Critical Heat Flux and Surface Rewet in Flow Boiling Systems
,”
Int. J. Heat Mass Transfer
,
26
(
8
), pp.
1189
1198
.
12.
Ochi
,
T.
,
Nakanishi
,
S.
,
Kaji
,
M.
, and
Ishigai
,
S.
,
1984
, “
Cooling of a Hot Plate With an Impinging Circular Jet
,” Multiphase Flow and Heat Transfer III, Part A: Fundamentals, T. N. Veziroglu and A. E. Bergles, eds., Elsevier, Amsterdam, pp.
671
681
.
13.
Zeitoun
,
O.
,
2012
, “
Heat Transfer Between a Vertical Water Jet and a Horizontal Square Surface
,”
Exp. Heat Transfer
,
25
(
3
), pp.
206
221
.
14.
Hall
,
D. E.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
2001
, “
Jet Impingement Boiling From a Circular Free-Surface Jet During Quenching: Part 2—Two-Phase Jet
,”
ASME J. Heat Transfer
,
123
(
4
), pp.
911
947
.
15.
Mozumder
,
A. K.
,
Monde
,
M.
,
Woodfield
,
P. L.
, and
Islam
,
M. A.
,
2006
, “
Maximum Heat Flux in Relation to Quenching of a High Temperature Surface With Liquid Jet Impingement
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
2877
2888
.
16.
Monde
,
M.
,
1985
, “
Critical Heat Flux in Saturated Forced Convective Boiling on a Heated Disk With an Impinging Jet
,”
Heat Mass Transfer
,
19
(3), pp.
205
209
.
17.
Abdelsalam
,
M. Y.
,
Kamal
,
M. M.
, and
Aboelnasr
,
M.
,
2014
, “
Flat Surface Heat Transfer Enhancement by an Impinging Circular Free Water Jet
,”
Exp. Heat Transfer
,
27
(
3
), pp.
276
295
.
18.
Attalla
,
M.
, and
Salem
,
M.
,
2014
, “
Experimental Investigation of Heat Transfer for a Jet Impinging Obliquely on a Flat Surface
,”
Exp. Heat Transfer
,
28
(
4
), pp.
378
391
.
19.
Celata
,
G. P.
,
Cumo
,
M.
, and
Mariani
,
A.
,
2007
, “
Spray Cooling Heat Flux in Quenching of a Hot Surfaces
,”
Sixth International Conference on Multiphase Flow
(ICMF), Leipzig, Germany, July 9–13.
20.
Zhou
,
D. W.
, and
Ma
,
C. F.
,
2006
, “
Radial Heat Transfer Behavior of Impinging Submerged Circular Jets
,”
Int. J. Heat Mass Transfer
,
49
(
9–10
), pp.
1719
1722
.
21.
Zumbrunnen
,
D. A.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1989
, “
Convective Heat Transfer Distribution on a Plate Cooled by Planar Water Jets
,”
ASME J. Heat Transfer
,
111
(
4
), pp.
889
896
.
22.
Leocadio
,
H.
,
Passos
,
J. C.
, and
da Silva
,
A. F. C.
,
2009
, “
Heat Transfer Behaviour of a High Temperature Steel Plate Cooled by a Subcooled Impinging Circular Water Jet
,”
Seventh ECI International Conference on Boiling Heat Transfer
, Florianopolis, Brazil, May 3–7, pp. 3–7.
23.
Liu
,
Z. H.
, and
Wang
,
J.
,
2001
, “
Study on Film Boiling Heat Transfer for Water Jet Impinging on High Temperature Flat Plate
,”
Int. J. Heat Mass Transfer
,
44
(
13
), pp.
2475
2481
.
24.
Barber
,
J.
,
Brutin
,
D.
, and
Tadrist
,
L.
,
2011
, “
A Review on Boiling Heat Transfer Enhancement With Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
280
.
25.
Oztop
,
H. F.
, and
Nada
,
E. A.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.
26.
Nguyen
,
C. T.
,
Galanis
,
N.
,
Polidori
,
G.
,
Fohanno
,
S.
,
Popa
,
C. V.
, and
Le Bechec
,
A.
,
2009
, “
An Experimental Study of a Confined and Submerged Impinging Jet Heat Transfer Using Al2O3-Water Nanofluid
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
401
411
.
27.
Zeitoun
,
O.
, and
Ali
,
M.
,
2012
, “
Nanofluids Impinging Jet Heat Transfer
,”
Nanoscale Res. Lett.
,
7
(
1
), p.
139
.
28.
Chakraborty
,
S.
,
Chakraborty
,
A.
,
Das
,
S.
,
Mukherjee
,
T.
,
Bhattacharjee
,
D.
, and
Ray
,
R. K.
,
2010
, “
Application of Water Based-TiO2 Nano-Fluid for Cooling of Hot Steel Plate
,”
ISIJ Int.
,
50
(
1
), pp.
124
127
.
29.
Mitra
,
S.
,
Saha
,
S. K.
,
Chakraborty
,
S.
, and
Das
,
S.
,
2012
, “
Study on Boiling Heat Transfer of Water–TiO2 and Water–MWCNT Nanofluids Based Laminar Jet Impingement on Heated Steel Surface
,”
Appl. Therm. Eng.
,
37
, pp.
353
359
.
30.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2014
, “
Pulsating Nanofluids Jet Impingement Cooling of a Heated Horizontal Surface
,”
Int. J. Heat Mass Transfer
,
69
, pp.
54
65
.
31.
Modak
,
M.
,
Srinivasan
,
S.
,
Garg
,
K.
,
Chougule
,
S. S.
,
Agarwal
,
M. K.
, and
Sahu
,
S. K.
,
2015
, “
Experimental Investigation of Heat Transfer Characteristics of the Hot Surface Using Al2O3—Water Nanofluids
,”
Chem. Eng. Process.: Process Intensif.
,
91
, pp.
104
113
.
32.
Li
,
Q.
,
Xuan
,
Y.
, and
Yu
,
F.
,
2012
, “
Experimental Investigation of Submerged Single Jet Impingement Using Cu-Water Nanofluid
,”
Appl. Therm. Eng.
,
36
, pp.
426
433
.
33.
Liu
,
Z. H.
, and
Qiu
,
Y. H.
,
2007
, “
Boiling Heat Transfer Characteristics of Nanofluids Jet Impingement on a Plate Surface
,”
Heat Mass Transfer
,
43
(
7
), pp.
699
706
.
34.
Ravikumar
,
S. V.
,
Jha
,
J. M.
,
Haldar
,
K.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2015
, “
Surfactant-Based Cu–Water Nanofluid Spray for Heat Transfer Enhancement of High Temperature Steel Surface
,”
ASME J. Heat Transfer
,
137
(
5
), p.
051504
.
35.
Agrawal
,
M.
, and
Sahu
,
S. K.
,
2014
, “
An Experimental Study on the Rewetting of Hot Vertical Surface by Circular Water Jet Impingement
,”
Exp. Heat Transfer
,
29
(2), pp.
151
172
.
36.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimental and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
37.
ANSI/ASME,
1985
, “
Measurement Uncertainty
,” American Society of Mechanical Engineers, New York, Paper No. PTC 19.1-1985.
38.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2008
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
(
5
), pp.
560
568
.
39.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.
40.
Sahu
,
S. K.
,
Das
,
P. K.
, and
Bhattacharyya
,
S.
,
2010
, “
An Experimental Investigation on the Quenching of a Hot Vertical Heater by Water Injection at High Flow Rate
,”
Nucl. Eng. Des.
,
240
(
6
), pp.
1558
1568
.
41.
Agarwal
,
C.
,
Kumar
,
R.
,
Gupta
,
A.
, and
Chatterjee
,
B.
,
2014
, “
Effect of Nozzle Geometry on the Rewetting of Hot Surface During Jet Impingement Cooling
,”
Exp. Heat Transfer
,
27
(
3
), pp.
256
275
.
42.
Karwa
,
M. T. N.
,
2012
, “
Experimental Study of Water Jet Impingement Cooling of Hot Steel Plates
,”
Ph.D. dissertation
, Technischen Universität Darmstadt, Darmstadt, Germany.http://tuprints.ulb.tu-darmstadt.de/3041/1/PhD_Thesis_Karwa.pdf
You do not currently have access to this content.