Time-dependent participating volume-to-surface ratio, V(t)/A, is used to adjust the semi-infinite (SI) solid solutions to the radial systems. In cylinders and spheres, the present “radial” SI sold model extends the domain of the planar model from δ ≪ R to δ ≈ R (δ is transient penetration depth and R is radius). The corresponding increase in the time span is from 0 < Fo < 0.01 to 0 < Fo < 0.06). The erfc series solution for finite solids (FS), which converges rapidly at small values of time, is simplified, by truncating the first term of the solution. For cylinders and spheres, the resulting half-term approximations are far more precise than the planar SI solid solutions.

References

1.
Glicksman
,
L. R.
, and
Lienhard
, and
J. H.
, V
,
2016
,
Modeling and Approximation in Heat Transfer
,
Cambridge University Press
, New York.
2.
Incropera
,
F. P.
, and
De Witt
,
D. P.
,
1990
,
Introduction to Heat Transfer
, 2nd ed.,
Willey
,
New York
.
3.
Rohsenow
,
W. M.
, and
Choi
,
H. Y.
,
1961
,
Heat Mass and Momentum Transfer
,
Prentice Hall
,
Englewood Cliffs, NJ
.
4.
Arpaci
,
V.
,
1966
,
Conduction Heat Transfer
,
Addison-Wesley
,
Reading, MA
.
5.
Yener
,
Y.
, and
Kakac
,
S.
,
2008
,
Heat Conduction
, 4th ed.,
Taylor & Fancis
,
London
.
6.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
, Oxford, UK.
7.
Ostrogorsky
,
A. G.
,
2008
, “
Transient Heat Conduction in Spheres for Fo < 0.3 and Finite Bi
,”
Heat Mass Transfer
,
44
(12), pp.
1557
1562
.
8.
Ostrogorsky
,
A. G.
, 2018, “
Transient Heat Conduction in Cylinders and Spheres for Small Values of Time
,” J. Serbian Soc. Comput. (in press).
9.
Ozisik
,
M. N.
,
1993
,
Heat Conduction
, 2nd ed.,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.