Micro/nanostructured surfaces have been widely explored to enhance condensation heat transfer over the past decades. When there is no flooding, micro/nanostructures can enable dropwise condensation by reducing solid-droplet adhesion. However, micro/nanostructures have mixed effects on filmwise condensation because the structures can simultaneously thin the condensate film and increase the fluid–solid friction. Although oil infusion of structured surfaces has recently been shown to render filmwise condensation dropwise in many cases, challenges remain in the case of extremely low-surface-tension fluids. This work aims to provide a unified experimental platform and study the impact of mini/micro/nanostructures on condensation heat transfer of low-surface-tension fluids in a customized environmental chamber. We first investigate the effect of microstructures, hydrophobic coating, as well as oil infusion on the filmwise condensation of a low-surface-tension fluid, e.g., refrigerant, on microporous aluminum surfaces. And we show that for low-surface-tension condensates, microstructures, hydrophobic coating, or oil infusion do not play a considerable role in enhancing or deteriorating heat transfer. Next, we study how the addition of nanostructures affects the condensation performance of the refrigerant on copper mini-fin structures. It is found that nanostructures slightly deteriorate the condensation performance due to the dominance of solid–liquid friction, although the performance of these mini-fins with nanostructured surfaces is still better than that of the mini-pin-fins. These results provide guidelines of designing mini/micro/nanoscale surface structures for enhanced condensation applications.

References

1.
Cheng
,
J.
,
Vandadi
,
A.
, and
Chen
,
C.-L.
,
2012
, “
Condensation Heat Transfer on Two-Tier Superhydrophobic Surfaces
,”
Appl. Phys. Lett.
,
101
(
13
), p.
131909
.
2.
Hou
,
Y.
,
Yu
,
M.
,
Chen
,
X.
,
Wang
,
Z.
, and
Yao
,
S.
,
2015
, “
Recurrent Filmwise and Dropwise Condensation on a Beetle Mimetic Surface
,”
ACS Nano
,
9
(
1
), pp.
71
81
.
3.
Mondal
,
B.
,
Mac Giolla Eain
,
M.
,
Xu
,
Q.
,
Egan
,
V. M.
,
Punch
,
J.
, and
Lyons
,
A. M.
,
2015
, “
Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation
,”
ACS Appl. Mater. Interfaces
,
7
(
42
), pp.
23575
23588
.
4.
Li
,
G.
,
Alhosani
,
M. H.
,
Yuan
,
S.
,
Liu
,
H.
,
Al Ghaferi
,
A.
, and
Zhang
,
T.
,
2014
, “
Microscopic Droplet Formation and Energy Transport Analysis of Condensation on Scalable Superhydrophobic Nanostructured Copper Oxide Surfaces
,”
Langmuir
,
30
(
48
), pp.
14498
14511
.
5.
Zamuruyev
,
K. O.
,
Bardaweel
,
H. K.
,
Carron
,
C. J.
,
Kenyon
,
N. J.
,
Brand
,
O.
,
Delplanque
,
J. P.
, and
Davis
,
C. E.
,
2014
, “
Continuous Droplet Removal Upon Dropwise Condensation of Humid Air on a Hydrophobic Micropatterned Surface
,”
Langmuir
,
30
(
33
), pp.
10133
10142
.
6.
Miljkovic
,
N.
,
Enright
,
R.
,
Nam
,
Y.
,
Lopez
,
K.
,
Dou
,
N.
,
Sack
,
J.
, and
Wang
,
E. N.
,
2013
, “
Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces
,”
Nano Lett.
,
13
(
1
), pp.
179
187
.
7.
Aili
,
A.
,
Ge
,
Q.
, and
Zhang
,
T.
,
2017
, “
How Nanostructures Affect Water Droplet Nucleation on Superhydrophobic Surfaces
,”
ASME J. Heat Transfer
,
139
(
11
), p. 112401.
8.
Liu
,
T. Q.
,
Sun
,
W.
,
Sun
,
X. Y.
, and
Ai
,
H. R.
,
2012
, “
Mechanism Study of Condensed Drops Jumping on Super-Hydrophobic Surfaces
,”
Colloids Surf., A
,
414
, pp.
366
374
.
9.
Enright
,
R.
,
Miljkovic
,
N.
,
Sprittles
,
J.
,
Nolan
,
K.
,
Mitchell
,
R.
, and
Wang
,
E. N.
,
2014
, “
How Coalescing Droplets Jump
,”
ACS Nano
,
8
(
10
), pp.
10352
10362
.
10.
Aili
,
A.
,
Li
,
H.
,
Alhosani
,
M. H.
, and
Zhang
,
T.
,
2016
, “
Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces
,”
ACS Appl. Mater. Interfaces
,
8
(
33
), pp.
21776
21786
.
11.
Miljkovic
,
N.
,
Preston
,
D. J.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2013
, “
Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces
,”
ACS Nano
,
7
(
12
), pp.
11043
11054
.
12.
Birbarah
,
P.
,
Li
,
Z.
,
Pauls
,
A.
, and
Miljkovic
,
N.
,
2015
, “
A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces
,”
Langmuir
,
31
(
28
), pp.
7885
7896
.
13.
Xiao
,
R.
,
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2013
, “
Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer
,”
Sci. Rep.
,
3
, p.
1988
.
14.
Anand
,
S.
,
Paxson
,
A. T.
,
Dhiman
,
R.
,
Smith
,
J. D.
, and
Varanasi
,
K. K.
,
2012
, “
Enhanced Condensation on Lubricant-Impregnated Nanotextured Surfaces
,”
ACS Nano
,
6
(
11
), pp.
10122
10129
.
15.
Kajiya
,
T.
,
Wooh
,
S.
,
Lee
,
Y.
,
Char
,
K.
,
Vollmer
,
D.
, and
Butt
,
H.-J.
,
2016
, “
Cylindrical Chains of Water Drops Condensing on Microstructured Lubricant-Infused Surfaces
,”
Soft Matter
,
12
(
46
), pp.
9377
9382
.
16.
Gebauer
,
T.
,
Al-Badri
,
A. R.
,
Gotterbarm
,
A.
,
Hajal
,
J. E.
,
Leipertz
,
A.
, and
Fröba
,
A. P.
,
2013
, “
Condensation Heat Transfer on Single Horizontal Smooth and Finned Tubes and Tube Bundles for R134a and Propane
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
516
524
.
17.
Cho
,
H. J.
,
Preston
,
D. J.
,
Zhu
,
Y.
, and
Wang
,
E. N.
,
2016
, “
Nanoengineered Materials for Liquid–Vapour Phase-Change Heat Transfer
,”
Nat. Rev. Mater.
,
2
(
2
), p.
16092
.
18.
Shekarriz
,
A.
, and
Plumbt
,
O. A.
,
1989
, “
Enhancement of Film Condensation Using Porous Fins
,”
J. Thermophys. Heat Transfer
,
3
(
3
), pp.
309
314
.
19.
Chang
,
T. B.
,
2008
, “
Effects of Surface Tension on Laminar Filmwise Condensation on a Horizontal Plate in a Porous Medium With Suction at the Wall
,”
Chem. Eng. Commun.
,
195
(
7
), pp.
721
737
.
20.
Wang
,
H. S.
, and
Rose
,
J. W.
,
2006
, “
Film Condensation in Horizontal Microchannels: Effect of Channel Shape
,”
Int. J. Therm. Sci.
,
45
(
12
), pp.
1205
1212
.
21.
Ji
,
W. T.
,
Li
,
Z. Y.
,
Qu
,
Z. G.
,
Guo
,
J. F.
,
Zhang
,
D. C.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2015
, “
Film Condensing Heat Transfer of R134a on Single Horizontal Tube Coated With Open Cell Copper Foam
,”
Appl. Therm. Eng.
,
76
, pp.
335
343
.
22.
Ji
,
W. T.
,
Zhao
,
C. Y.
,
Zhang
,
D. C.
,
Li
,
Z. Y.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2014
, “
Condensation of R134a Outside Single Horizontal Titanium, Cupronickel (B10 and B30), Stainless Steel and Copper Tubes
,”
Int. J. Heat Mass Transfer
,
77
, pp.
194
201
.
23.
Wang
,
H. S.
, and
Rose
,
J. W.
,
2005
, “
A Theory of Film Condensation in Horizontal Noncircular Section Microchannels
,”
ASME J. Heat Transfer
,
127
(
10
), p.
1096
.
24.
Gstoehl
,
D.
, and
Thome
,
J. R.
,
2005
, “
Film Condensation of R-134a on Tube Arrays With Plain and Enhanced Surfaces—Part I: Experimental Heat Transfer Coefficients
,”
ASME J. Heat Transfer
,
128
(
1
), pp.
21
32
.
25.
Ma
,
X. H.
,
Zhou
,
X. D.
,
Lan
,
Z.
,
Li
,
Y. M.
, and
Zhang
,
Y.
,
2008
, “
Condensation Heat Transfer Enhancement in the Presence of Non-Condensable Gas Using the Interfacial Effect of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1728
1737
.
26.
Incropera, F. P., DeWitt, D. P., Bergman, T. L., and Lavine, A. S., 2007,
Fundamentals of Heat and Mass Transfer
, Wiley, Hoboken, NJ.
27.
Barthwal
,
S.
,
Kim
,
Y. S.
, and
Lim
,
S. H.
,
2013
, “
Mechanically Robust Superamphiphobic Aluminum Surface With Nanopore-Embedded Microtexture
,”
Langmuir
,
29
(
38
), pp.
11966
11974
.
28.
Wu
,
W.
,
Wu
,
J.
,
Kim
,
J.-H.
, and
Lee
,
N. Y.
,
2015
, “
Instantaneous Room Temperature Bonding of a Wide Range of Non-Silicon Substrates With Poly(Dimethylsiloxane) (PDMS) Elastomer Mediated by a Mercaptosilane
,”
Lab Chip
,
15
(
13
), pp.
2819
2825
.
29.
Lai
,
C. Y.
,
Tang
,
T. C.
,
Amadei
,
C. A.
,
Marsden
,
A. J.
,
Verdaguer
,
A.
,
Wilson
,
N.
, and
Chiesa
,
M.
,
2014
, “
A Nanoscopic Approach to Studying Evolution in Graphene Wettability
,”
Carbon
,
80
(
1
), pp.
784
792
.
30.
Smith
,
J. D.
,
Dhiman
,
R.
,
Anand
,
S.
,
Reza-Garduno
,
E.
,
Cohen
,
R. E.
,
McKinley
,
G. H.
, and
Varanasi
,
K. K.
,
2013
, “
Droplet Mobility on Lubricant-Impregnated Surfaces
,”
Soft Matter
,
9
(
6
), pp.
1772
1780
.
31.
Oss
,
C. J. V.
,
Good
,
R. J.
, and
Chaudhurys
,
M. K.
,
1988
, “
Additive and Nonadditive Surface Tension Compoents and the Interpretation of Contact Angles
,”
Langmuir
,
4
(
4
), pp.
884
891
.
32.
Schmidt, J. W., Carillo-Nava, E., and Moldover, M. R., 1996, “
Partially Halogenated Hydrocarbons CHFCl-CF3, CF3-CH3, CF3-CHF-CHF2, CF3-CH2-CF3, CHF2-CF2-CH2F, CF3-CH2-CHF2, CF3-0-CHF2: Critical Temperature, Refractive Indices, Surface Tension and Estimates of Liquid, Vapor and Critical Densities
,”
Fluid Phase Equilibria
,
122
(1–2), pp. 187–206.
33.
Preston
,
D. J.
,
Song
,
Y.
,
Lu
,
Z.
,
Antao
,
D. S.
, and
Wang
,
E. N.
,
2017
, “
Design of Lubricant Infused Surfaces
,”
ACS Appl. Mater. Interfaces
,
9
(
48
), pp.
42383
42392
.
34.
Chen
,
J.
,
Ko
,
F.
,
Hsieh
,
K.
,
Chou
,
C.
,
Chang
,
F.
, and
Chen
,
J.
,
2014
, “
Effect of Fluoroalkyl Substituents on the Reactions of Alkylchlorosilanes With Mold Surfaces for Nanoimprint Lithography
,”
B: Microelectron. Nanom. Struct.
,
22
(6), p.
3233
.
35.
Wexler
,
J. S.
,
Jacobi
,
I.
, and
Stone
,
H. A.
,
2015
, “
Shear-Driven Failure of Liquid-Infused Surfaces
,”
Phys. Rev. Lett.
,
114
(
16
), pp.
1
5
.
36.
Renken
,
K. J.
, and
Aboye
,
M.
,
1993
, “
Experiments on Film Condensation Promotion Within Thin Inclined Porous Coatings
,”
Int. J. Heat Mass Transfer
,
36
(
5
), pp.
1347
1355
.
37.
Chu
,
R.
,
Hatanaka
,
T.
, and
Nishio
,
S.
,
2008
, “
Condensation Enhancement on a Vertical Plate (1st Report, Heat Transfer Characteristic on a Dispersed Finned Surface)
,”
Heat Transfer-Asian Res.
,
37
(
8
), pp.
499
513
.
38.
Chu
,
R.
,
Hatanaka
,
T.
, and
Nishio
,
S.
,
2010
, “
Enhancement of Condensation on a Vertical Plate (2nd Report, Prediction of Condensation on a Dispersed Finned Surface)
,”
Heat Transfer-Asian Res.
,
39
(
3
), pp.
178
194
.
You do not currently have access to this content.