Dielectric barrier discharge (DBD) plasma actuators have several applications within the field of active flow control. Separation control, wake control, aircraft noise reduction, modification of velocity fluctuations, or boundary layer control are just some examples of their applications. They present several attractive features such as their simple construction, very low mass, fast response, low power consumption, and robustness. Besides their aerodynamic applications, these devices have also possible applications within the field of heat transfer, for example film cooling applications or ice formation prevention. However, due to the extremely high electric fields in the plasma region and consequent impossibility of applying classic intrusive techniques, there is a relative lack of information about DBDs thermal characteristics. In an attempt to overcome this scenario, this work describes the thermal behavior of DBD plasma actuators under different flow conditions. Infra-red thermography measurements were performed in order to obtain the temperature distribution of the dielectric layer and also of the exposed electrode. During this work, we analyzed DBD plasma actuators with different dielectric thicknesses and also with different dielectric materials, whose thermal behavior is reported for the first time. The results allowed to conclude that the temperature distribution is not influenced by the dielectric thickness, but it changes when the actuator operates under an external flow. We also verified that, although in quiescent conditions the exposed electrode temperature is higher than the plasma region temperature, the main heat energy dissipation occurs in the dielectric, more specifically in the plasma formation region.

References

1.
Abdollahzadeh
,
M.
,
Pascoa
,
J. C.
, and
Oliveira
,
P. J.
,
2014
, “
Modified Split-Potential Model for Modeling the Effect of DBD Plasma Actuators in High Altitude Flow Control
,”
Curr. Appl. Phys.
,
14
(
8
), pp.
1160
1170
.
2.
Jayaraman
,
B.
,
Thakur
,
S.
, and
Shyy
,
W.
,
2007
, “
Modeling of Fluid Dynamics and Heat Transfer Induced by Dielectric Barrier Plasma Actuator
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
517
525
.
3.
Messanelli
,
F.
, and
Belan
,
M.
,
2017
, “
A Comparison Between Corona and DBD Plasma Actuators for Separation Control on an Airfoil
,”
AIAA
Paper No. AIAA 2017-0395.
4.
Vernet
,
J. A.
,
Orlu
,
R.
, and
Alfredsson
,
P. H.
,
2015
, “
Separation Control by Means of Plasma Actuation on a Half Cylinder Approached by a Turbulent Boundary Layer
,”
J. Wind Eng. Ind. Aerodyn.
,
145
, pp.
318
326
.
5.
Kelley
,
C. L.
,
Bowles
,
P.
,
Cooney
,
J.
,
He
,
C.
, and
Corke
,
T. C.
,
2012
, “
High Mach Number Leading-Edge Flow Separation Control Using AC DBD Plasma Actuators
,”
AIAA
Paper No. AIAA 2012-0906.
6.
Kozlov
,
A. V.
,
2010
, “
Plasma Actuators for Bluff Body Flow Control
,”
Ph.D. thesis
, University of Notre Dame, Notre Dame, IN.https://www3.nd.edu/~akozlov/Publications/Kozlov_A_candidacy.pdf
7.
Thomas
,
F. O.
,
Kozlov
,
A.
, and
Corke
,
T. C.
,
2008
, “
Plasma Actuators for Cylinder Flow Control and Noise Reduction
,”
AIAA J.
,
46
(
8
), pp.
1921
1931
.
8.
Huang
,
X.
, and
Zhang
,
X.
,
2008
, “
Streamwise and Spanwise Plasma Actuators for Flow-Induced Cavity Noise Control
,”
Phys. Fluids
,
20
(
3
), p.
037101
.
9.
Roy
,
S.
, and
Wang
,
C.
,
2013
, “
Numerical Investigation of Three-Dimensional Plasma Actuation for Improving Film Cooling Effectiveness
,”
J. Thermophys. Heat Transfer
,
27
(
3
), pp.
489
497
.
10.
Yu
,
J.
,
He
,
L.
,
Zhu
,
W.
,
Ding
,
W.
, and
Wang
,
Y.
,
2013
, “
Numerical Simulation of the Effect of Plasma Aerodynamic Actuation on Improving Film Hole Cooling Performance
,”
Heat Mass Transfer
,
49
(
6
), pp.
897
906
.
11.
Grundmann
,
S.
, and
Tropea
,
C.
,
2009
, “
Experimental Damping of Boundary-Layer Oscillations Using DBD Plasma Actuators
,”
Int. J. Heat Fluid Flow
,
30
(
3
), pp.
394
402
.
12.
Grundmann
,
S.
, and
Tropea
,
C.
,
2008
, “
Active Cancellation of Artificially Introduced Tollmien-Schlichting Waves Using Plasma Actuators
,”
Exp. Fluids
,
44
(
5
), pp.
795
806
.
13.
Abdollahzadeh
,
M.
,
Rodrigues
,
F.
,
Pascoa
,
J. C.
, and
Oliveira
,
P. J.
,
2015
, “
Numerical Design and Analysis of a Multi-DBD Actuator Configuration for the Experimental Testing of ACHEON Nozzle Model
,”
Aerosp. Sci. Technol.
,
41
, pp.
259
273
.
14.
Rodrigues
,
F.
,
Pascoa
,
J. C.
,
Dias
,
F.
, and
Abdollahzadeh
,
M.
,
2015
, “
Plasma Actuators for Boundary Layer Control of Next Generation Nozzles
,”
ASME
Paper No. IMECE2015-52193.
15.
Joussot
,
R.
,
Hong
,
D.
,
Weber-Rozenbaum
,
R.
, and
Leroy-Chesneau
,
A.
,
2010
, “
Modification of the Laminar-to-Turbulent Transition on a Flat Plate Using DBD Plasma Actuator
,”
AIAA
Paper No. AIAA 2010-4708.
16.
Grundmann
,
S.
, and
Tropea
,
C.
,
2007
, “
Experimental Transition Delay Using Glow-Discharge Plasma Actuators
,”
Exp. Fluids
,
42
(
4
), pp.
653
657
.
17.
Abdollahzadeh
,
M.
,
Pascoa
,
J.
, and
Oliveira
,
P. J.
,
2016
, “
Implementation of the Classical Plasma-Fluid Model for Simulation of Dielectric Barrier (DBD) Actuators in OpenFOAM
,”
Comput. Fluids
,
128
, pp.
77
90
.
18.
Rodrigues
,
F.
,
Pascoa
,
J. C.
, and
Trancossi
,
M.
,
2016
, “
Analysis of Innovative Plasma Actuator Geometries for Boundary Layer Control
,”
ASME
Paper No. IMECE2016-66495.
19.
Abdollahzadeh
,
M.
,
Páscoa
,
J. C.
, and
Oliveira
,
P. J.
,
2014
, “
Two-Dimensional Numerical Modeling of Interaction of Micro-Shock Wave Generated by Nanosecond Plasma Actuators and Transonic Flow
,”
J. Comput. Appl. Math.
,
270
, pp.
401
416
.
20.
Corke
,
T. C.
,
Enloe
,
C. L.
, and
Wilkinson
,
S. P.
,
2010
, “
Dielectric Barrier Discharge Plasma Actuators for Flow Control
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
505
529
.
21.
Enloe
,
C. L.
,
McLaughlin
,
T. E.
,
VanDyken
,
R. D.
,
Kachner
,
K. D.
,
Jumper
,
E. J.
, and
Corke
,
T. C.
,
2004
, “
Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology
,”
AIAA J.
,
42
(
3
), pp.
589
594
.
22.
Enloe
,
C. L.
,
McLaughlin
,
T. E.
,
VanDyken
,
R. D.
,
Kachner
,
K. D.
,
Jumper
,
E. J.
,
Corke
,
T. C.
,
Post
,
M.
, and
Haddad
,
O.
,
2004
, “
Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Geometric Effects
,”
AIAA J.
,
42
(
3
), pp.
595
604
.
23.
Forte
,
M.
,
Leger
,
L.
,
Pons
,
J.
,
Moreau
,
E.
, and
Touchard
,
G.
,
2005
, “
Plasma Actuators for Airflow Control: Measurement of the Non-Stationary Induced Flow Velocity
,”
J. Electrost.
,
63
(
6–10
), pp.
929
936
.
24.
Hyun
,
K. T.
, and
Chun
,
C.
,
2003
, “
The Wake Flow Control Behind a Circular Cylinder Using Ion Wind
,”
Exp. Fluids
,
35
(
6
), pp.
541
552
.
25.
McLaughlin
,
T. E.
,
Munska
,
M. D.
,
Vaeth
,
J. P.
,
Dauwalter
,
T. E.
,
Goode
,
J. R.
, and
Siegel
,
S. G.
,
2004
, “
Plasma-Based Actuators for Cylinder Wake Vortex Control
,”
AIAA
Paper No. AIAA 2004-2129.
26.
Sung
,
Y.
,
Kim
,
W.
,
Mungal
,
M.
, and
Cappelli
,
M.
,
2006
, “
Aerodynamic Modification of Flow Over Bluff Objects by Plasma Actuation
,”
Exp. Fluids
,
41
(
3
), pp.
479
486
.
27.
Shcherbakov
,
Y.
,
Ivanov
,
N.
,
Baryshev
,
N. D.
,
Frolovskij
,
V. S.
, and
Syssoev
,
V. S.
,
2000
, “
Drag Reduction by AC Streamer Corona Discharges Along a Wing-Like Profile Plate
,”
AIAA
Paper No. AIAA2000-2670.
28.
Corke
,
T. C.
,
Jumper
,
E. J.
,
Post
,
M. L.
,
Orlov
,
D. M.
, and
McLaughlin
,
T. E.
,
2002
, “
Application of Weakly-Ionized Plasmas as Wing Flow-Control Devices
,”
AIAA
Paper No. AIAA2002-0350.
29.
Corke
,
T. C.
,
Mertz
,
B.
, and
Patel
,
M. P.
,
2006
, “
Plasma Flow Control Optimized Airfoil
,”
AIAA
Paper No. AIAA 2006-1208.
30.
Roth
,
J. R.
,
2003
, “
Aerodynamic Flow Acceleration Using Paraelectric and Peristaltic Electrohydrodynamic Effects of a One Atmosphere Uniform Glow Discharge Plasma
,”
Phys. Plasmas
,
10
(
5
), pp.
2117
2126
.
31.
Post
,
M. L.
, and
Corke
,
T. C.
,
2004
, “
Separation Control Using Plasma Actuators: Dynamic Stall Vortex Control on an Oscillating Airfoil
,”
AIAA
Paper No. AIAA 2004-2517.
32.
Post
,
M. L.
, and
Corke
,
T. C.
,
2004
, “
Separation Control Using Plasma Actuators—Stationary and Oscillating Airfoils
,”
AIAA
Paper No. AIAA 2004-841.
33.
Post
,
M. L.
, and
Corke
,
T. C.
,
2004
, “
Separation Control on High Angle of Attack Airfoil Using Plasma Actuators
,”
AIAA J.
,
42
(
11
), pp.
2177
2184
.
34.
Van den Broecke
,
J.
,
2016
, “
Efficiency and De-Icing Capability of Nanosecond Pulsed Dielectric Barrier Discharge Plasma Actuators
,”
Master's thesis
, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid%3A945c1293-c61b-48e0-a40c-7ce20a05d100
35.
Meng
,
X.
,
Cai
,
J.
,
Tian
,
Y.
,
Han
,
X.
,
Zhang
,
D.
, and
Hu
,
H.
,
2016
, “
Experimental Study of Deicing and Anti-Icing on a Cylinder by DBD Plasma Actuation
,”
AIAA
Paper No. AIAA 2016-4019.
36.
Dong
,
B.
,
Bauchire
,
J. M.
,
Pouvesle
,
J. M.
,
Magnier
,
P.
, and
Hong
,
D.
,
2008
, “
Experimental Study of a DBD Surface Discharge for the Active Control of Subsonic Airflow
,”
J. Phys. D
,
41
(
15
), p.
155201
.
37.
Stanfield
,
S. A.
,
Menart
,
J.
,
DeJoseph
,
C.
,
Kimmel
,
R. L.
, and
Hayes
,
J. R.
,
2009
, “
Rotational and Vibrational Temperature Distributions for a Dielectric Barrier Discharge in Air
,”
AIAA J.
,
47
(
5
), pp.
1107
1115
.
38.
Rodrigues
,
F.
,
Pascoa
,
J.
, and
Trancossi
,
M.
,
2018
, “
Heat Generation Mechanisms of DBD Plasma Actuators
,”
Exp. Therm. Fluid Sci.
,
90
, pp.
55
65
.
39.
Jukes
,
T. N.
,
Choi
,
K.
,
Segawa
,
T.
, and
Yoshida
,
H.
,
2008
, “
Jet Flow Induced by a Surface Plasma Actuator
,”
Proc. Inst. Mech. Eng. Part I
,
222
(
5
), pp.
347
356
.
40.
Joussot
,
R.
,
Hong
,
D.
,
Rabat
,
H.
,
Boucinha
,
V.
,
Weber-Rozenbaum
,
R.
, and
Leroy-Chesneau
,
A.
,
2010
, “
Thermal Characterization of a DBD Plasma Actuator: Dielectric Temperature Measurements Using Infrared Thermography
,”
AIAA
Paper No. AIAA 2010-5102.
41.
Tirumala
,
R.
,
Bernard
,
N.
,
Moreau
,
E.
,
Fenot
,
M.
,
Lalizel
,
G.
, and
Dorignac
,
E.
,
2014
, “
Temperature Characterization of Dielectric Barrier Discharge Actuators: Influence of Electrical and Geometric Parameters
,”
J. Phys. D
,
47
(
25
), p.
255203
.
42.
Portugal
,
S.
,
Roy
,
S.
, and
Lin
,
J.
,
2017
, “
Functional Relationship Between Material Property, Applied Frequency and Ozone Generation for Surface Dielectric Barrier Discharges in Atmospheric Air
,”
Sci. Rep.
,
7
(
1
), p. 6388.
43.
Rodrigues
,
F.
,
Pascoa
,
J.
, and
Trancossi
,
M.
,
2017
, “
Experimental Thermal Characterization of DBD Plasma Actuators
,”
ASME
Paper No. IMECE2017-70541.
44.
Bernard
,
N.
, and
Moreau
,
E.
,
2014
, “
Electrical and Mechanical Characteristics of Surface AC Dielectric Barrier Discharge Plasma Actuators Applied to Air-Flow Control
,”
Exp. Fluids
,
55
(
11
), p. 1846.
45.
Erfani
,
R.
,
Zare-Behtash
,
H.
, and
Kontis
,
K.
,
2012
, “
Plasma Actuator: Influence of Dielectric Surface Temperature
,”
Exp. Therm. Fluid Sci.
,
42
, pp.
258
264
.
46.
Kotsonis
,
M.
,
Ghaemi
,
S.
,
Veldhuis
,
L.
, and
Scarano
,
F.
,
2011
, “
Measurement of the Body Force Field of Plasma Actuators
,”
J. Phys. D.
,
44
(
4
), p.
045204
.
You do not currently have access to this content.