In the present paper, numerical study of flow and heat transfer properties of RP-3 kerosene at liquid and supercritical conditions in an impingement model is conducted with renormalization group (RNG) kε turbulence model and a ten-species surrogate of kerosene. The independence of grids is first studied, and the numerical results are compared with experimental data for validation. Characteristics of flow and heat transfer of kerosene flow in the impingement model are studied with different inlet mass flow rates and different inlet temperatures. The velocity and temperature field show similar profile compared to that of air impingement. The heat transfer rates increase first with the increasing of inlet temperature and then decrease suddenly when the inlet temperature is 500 K.

References

1.
Hendricks
,
R. C.
,
Simoneau
,
R. J.
, and
Smith
,
R. V.
,
1970
, “
Survey of Heat Transfer to Near-Critical Fluids
,” National Aeronautics and Space Administration, Washington, DC, Technical Note No.
NASA-TN-D-5886
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710003560.pdf
2.
Bellan
,
J.
,
2000
, “
Supercritical (Subcritical) Fluid Behavior and Modeling: Drops, Streams, Shear and Mixing Layers, and Sprays
,”
Prog. Energy Combust. Sci.
,
26
(
4–6
), pp. 329–366.
3.
Yang
,
V.
,
2000
, “
Modeling of Supercritical Vaporization, Mixing and Combustion Processes in Liquid-Fueled Propulsion System
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
925
942
.
4.
Linne
,
D. L.
, and
Meyer
,
M. L.
,
1997
, “
Evaluation of Heat Transfer and Thermal Stability of Supercritical JP-7 Fuel
,”
AIAA
Paper No. 97-3041.
5.
Hu
,
Z. H.
,
Chen
,
T. K.
, and
Luo
,
Y. S.
,
2002
, “
Heat Transfer to Kerosene at Supercritical Pressure in Small-Diameter Tube With Large Heat Flux
,”
J. Chem. Ind. Eng.
,
53
(2), pp.
134
138
.
6.
Zhong
,
F.
,
Fan
,
X.
,
Yu
,
G.
,
Li
,
J.
, and
Sung
,
C.-J.
,
2009
, “
Heat Transfer of Aviation Kerosene at Supercritical Conditions
,”
J. Thermophys. Heat Transfer
,
23
, pp.
543
550
.
7.
Dang
,
G.
,
Zhong
,
F. Q.
,
Zhang
,
Y. J.
, and
Zhang
,
X. Y.
,
2015
, “
Numerical Study of Heat Transfer Deterioration of Turbulent Supercritical Kerosene Flow in Heated Circular Tube
,”
Int. J. Heat Mass Transfer
,
85
, pp.
1003
1011
.
8.
Wang
,
X.
,
Zhong
,
F. Q.
,
Chen
,
L. H.
, and
Zhang
,
X. Y.
,
2013
, “
A Coupled Heat Transfer Analysis With Effects of Catalytic Cracking of Kerosene for Actively Cooled Supersonic Combustor
,”
J. Propul. Technol.
,
34
(
1
), pp.
47
53
.
9.
Buchlin
,
J.-M.
, 2000, “
Convective Heat Transfer in Impinging Gas-Jet Systems
,” Lecture Series 2000–03, von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium, pp.
1
33
.
10.
Han
,
B.
, and
Goldstein
,
R.
, 2000, “
Aero-Thermal Performance of Internal Cooling Systems in Turbomachines
,” Lecture Series 2000–03, von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium, pp. 34–57.
11.
Chambers
,
A.
,
Gillespie
,
D.
,
Ireland
,
P.
, and
Mitchell
,
M.
,
2006
, “
Enhancement of Impingement Cooling in a High Cross Flow Channel Using Shaped Impingement Cooling Holes
,”
ASME
Paper No. GT2006-91229.
12.
Son
,
C.
,
Gillespie
,
D.
,
Ireland
,
P.
, and
Dailey
,
G.
,
2001
, “
Heat Transfer and Flow Characteristics of an Engine Representative Impingement Cooling System
,”
ASME J. Turbomach.
,
123
(
1
), pp.
154
160
.
13.
Gao
,
L.
,
2003
, “
Effect of Jet Hole Arrays Arrangement on Impingement Heat Transfer
,”
M.Sc. thesis
, The Louisiana State University, Baton Rouge, LA.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.606.6991&rep=rep1&type=pdf
14.
Lee
,
D. H.
,
Song
,
J.
, and
Jo
,
M. C.
,
2004
, “
The Effects of Nozzle Diameter on Impinging Jet Heat Transfer and Fluid Flow
,”
ASME J. Heat Transfer
,
126
, pp.
554
557
.
15.
San
,
J. Y.
, and
Shiao
,
W. Z.
,
2006
, “
Effects of Jet Plate Size and Plate Spacing on the Stagnation Nusselt Number for a Confined Circular Air Jet Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3477
3486
.
16.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.
17.
Han
,
B.
, and
Goldstein
,
R.-J.
,
2001
, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N. Y. Acad. Sci.
,
934
(1), pp.
147
161
.
18.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M.
, and
Button
,
B.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.
19.
Weigand
,
B.
, and
Spring
,
S.
,
2009
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(2), pp. 101–142.
20.
Zhong
,
F. Q.
,
Fan
,
X. J.
,
Yu
,
G.
,
Li
,
J. G.
, and
Sung
,
C. J.
,
2011
, “
Thermal Cracking and Heat Sink Capacity of Aviation Kerosene Under Supercritical Conditions
,”
J. Thermophys. Heat Transfer
,
25
(
3
), pp.
450
456
.
21.
Wolfstein
,
M.
,
1969
, “
The Velocity and Temperature Distribution of One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
301
318
.
22.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat Transfer
,
132
(
9
), p.
092201
.
23.
Katti
,
V.
, and
Prabhu
,
S.
,
2008
, “
Influence of Spanwise Pitch on Local Heat Transfer Distribution for In-Line Arrays of Circular Jets With Spent Air Flow in Two Opposite Directions
,”
Exp. Therm. Fluid Sci.
,
22
(
1
), pp.
84
95
.
24.
Baughn
,
J. W.
,
Hechanova
,
A. E.
, and
Yan
,
X.
,
1991
, “
An Experimental Study of Entrainment Effects on the Heat Transfer From a Flat Surface to a Heated Circular Impinging Jet
,”
ASME J. Heat Transfer
,
113
, pp.
1023
1025
.
25.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
, pp.
337
342
.
26.
Bailey
,
J. C.
, and
Bunker
,
R. S.
,
2002
, “
Local Heat Transfer and Flow Distributions for Impinging Jet Arrays of Dense and Sparse Extent
,”
ASME
Paper No. GT-2002-30473.
27.
Annerfeldt
,
M. O.
,
Persson
,
J. L.
, and
Torisson
,
T.
,
2001
, “
Experimental Investigation of Impingement Cooling With Turbulators or Surface Enlarging Elements
,”
ASME
Paper No. 2001-GT-0149.
28.
Terzis
,
A.
,
2006
, “
On the Correspondence Between Flow Structures and Convective Heat Transfer Augmentation for Multiple Jet Impingement
,”
Exp. Fluids
,
57
(9), p.
146
.https://link.springer.com/article/10.1007/s00348-016-2232-7
29.
Florschuetz
,
L. W.
, and
Isoda
,
Y.
,
1983
, “
Flow Distributions and Discharge Coefficient Effects for Jet Array Impingement With Initial Crossflow
,”
J. Eng. Power
,
152
(
2
), pp.
296
304
.
30.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
, and
Truman
,
C. R.
,
1981
, “
Jet Array Impingement With Crossflow-Correlation of Streamwise Resolved Flow and Heat Transfer Distributions
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-CR-3373
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19810006721.pdf
31.
Fan
,
X. J.
,
Yu
,
G.
,
Li
,
J. G.
, and
Zhang
,
X. Y.
,
2006
, “
Investigation of Vaporized Kerosene Injection and Combustion in a Supersonic Model Combustor
,”
J. Propul. Power
,
22
(
1
), pp. 103–110.
You do not currently have access to this content.