This paper presents fundamental research on the hydrodynamics and heat transfer surrounding a single elongated bubble during flow boiling in a circular microchannel. A continuum surface force (CSF) model based on the volume of fluid (VOF) method is combined with the thermocapillary force to explore the effects of thermocapillarity for flow boiling in microchannels. To validate the self-defined codes, a two-phase thermocapillary-driven flow and a Taylor bubble growing in a capillary tube are studied. Results of both test cases show good convergence and agreement with data from the earlier literature. The bubble motion and the local heat transfer coefficient (HTC) on the heated wall with respect to time are discussed. It is found that for large Marangoni number (case 3), variation of surface tension has affected the bubble shape and temperature profile. The thermocapillary effect induces convection in a thin liquid film region, which augments the HTCs at specified positions. The numerical investigation also shows that the average HTC increased by 6.7% in case 3 when compared with case 1. Thus, it is very important to study further the effects of themocapillarity and the Marangoni effect on bubble growth in microchannels.

References

1.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2003
, “
Evolution of Microchannel Flow Passages-Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
,
24
(
1
), pp.
3
17
.
2.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Criterion for Evaporative Heat Transfer in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1967
1976
.
3.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
389
407
.
4.
Thome
,
J. R.
,
2004
, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
128
139
.
5.
Garimella
,
S. V.
, and
Sobhan
,
C. B.
,
2003
, “
Transport in Microchannels—A Critical Review
,”
Annu. Rev. Heat Transfer
,
13
(
13
), pp.
1
50
.
6.
Leong
,
K. C.
,
Ho
,
J. Y.
, and
Wong
,
K. K.
,
2017
, “
A Critical Review of Pool and Flow Boiling Heat Transfer of Dielectric Fluids on Enhanced Surfaces
,”
Appl. Therm. Eng.
,
112
, pp.
999
1019
.
7.
Guo
,
Z.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2014
, “
A Review of Computational Modelling of Flow Boiling in Microchannels
,”
J. Comput. Multiphase Flow
,
6
(
2
), pp.
79
110
.
8.
Jacobi
,
A. M.
, and
Thome
,
J. R.
,
2002
, “
Heat Transfer Model for Evaporation of Elongated Bubble Flows in Microchannels
,”
ASME J. Heat Transfer
,
124
(
6
), pp.
1131
1131
.
9.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2005
, “
Numerical Simulation of Growth of a Vapor Bubble During Flow Boiling of Water in a Microchannel
,”
Microfluid. Nanofluid
,
1
(
2
), pp.
137
145
.
10.
Magnini
,
M.
,
Pulvirenti
,
B.
, and
Thome
,
J. R.
,
2013
, “
Numerical Investigation of the Influence of Leading and Sequential Bubbles on Slug Flow Boiling Within a Microchannel
,”
Int. J. Therm. Sci.
,
71
(
9
), pp.
36
52
.
11.
Ling
,
K.
,
Son
,
G.
,
Sun
,
D.-L.
, and
Tao
,
W.-Q.
,
2015
, “
Three Dimensional Numerical Simulation on Bubble Growth and Merger in Microchannel Boiling Flow
,”
Int. J. Therm. Sci.
,
98
, pp.
135
147
.
12.
Magnini
,
M.
, and
Thome
,
J. R.
,
2017
, “
An Updated Three-Zone Heat Transfer Model for Slug Flow Boiling in Microchannels
,”
Int. J. Multiphase Flow
,
91
, pp.
296
314
.
13.
Thome
,
J. R.
,
Dupont
,
V.
, and
Jacobi
,
A. M.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels—Part I: Presentation of the Model
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3375
3385
.
14.
Karbalaei
,
A.
,
Kumar
,
R.
, and
Cho
,
H. J.
,
2016
, “
Thermocapillarity in Microfluidics—A Review
,”
Micromachines
,
7
(
1
), p. 13.
15.
Zhuan
,
R.
, and
Wang
,
W.
,
2010
, “
Simulation on Nucleate Boiling in Micro-Channel
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
502
512
.
16.
Wang
,
Z.
,
Li
,
S.
,
Chen
,
R.
,
Zhu
,
X.
, and
Liao
,
Q.
,
2017
, “
Simulation on the Dynamic Flow and Heat and Mass Transfer of a Liquid Column Induced by the IR Laser Photothermal Effect Actuated Evaporation in a Microchannel
,”
Int. J. Heat Mass Transfer
,
113
, pp.
975
983
.
17.
Zhang
,
J.
,
Li
,
W.
, and
Minkowycz
,
W. J.
,
2017
, “
Numerical Simulation of R410A Condensation in Horizontal Microfin Tubes
,”
Numer. Heat Transfer, Part B
,
71
(
4
), pp.
361
376
.
18.
Zhang
,
J.
,
Li
,
W.
, and
Sherif
,
S. A.
,
2016
, “
A Numerical Study of Condensation Heat Transfer and Pressure Drop in Horizontal Round and Flattened Minichannels
,”
Int. J. Therm. Sci.
,
106
, pp.
80
93
.
19.
Zhang
,
J.
, and
Li
,
W.
,
2016
, “
Numerical Study on Heat Transfer and Pressure Drop Characteristics of R410A Condensation in Horizontal Circular Mini/Micro-Tubes
,”
Can. J. Chem. Eng.
,
94
(
9
), pp.
1809
1819
.
20.
Zhang
,
J.
,
Fletcher
,
D. F.
, and
Li
,
W.
,
2016
, “
Heat Transfer and Pressure Drop Characteristics of Gas–Liquid Taylor Flow in Mini Ducts of Square and Rectangular Cross-Sections
,”
Int. J. Heat Mass Transfer
,
103
, pp.
45
56
.
21.
Zhang
,
J.
,
Li
,
W.
,
Sherif
,
S. A.
,
Fletcher
,
D. F.
,
Li
,
W.
, and
Minkowycz
,
W. J.
,
2016
, “
Investigation of Hydrodynamic and Heat Transfer Characteristics of Gas-Liquid Taylor Flow in Vertical Capillaries
,”
Int. Commun. Heat Mass
,
74
, pp.
1
10
.
22.
Sasmal
,
G. P.
, and
Hochstein
,
J. I.
,
1994
, “
Marangoni Convection With a Curved and Deforming Free Surface in a Cavity
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
577
582
.
23.
Rattner
,
A. S.
, and
Garimella
,
S.
,
2014
, “
Simple Mechanistically Consistent Formulation for Volume-Of-Fluid Based Computations of Condensing Flows
,”
ASME J. Heat Transfer
,
136
(
7
), p. 071501.
24.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
25.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
26.
Nabil
,
M.
, and
Rattner
,
A. S.
,
2016
, “
InterThermalPhaseChangeFoam—A Framework for Two-Phase Flow Simulations With Thermally Driven Phase Change
,”
SoftwareX
,
5
, pp.
216
226
.
27.
Issa
,
R. I.
,
Ahmadi-Befrui
,
B.
,
Beshay
,
K. R.
, and
Gosman
,
A. D.
,
1991
, “
Solution of the Implicitly Discretised Reacting Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
93
(
2
), pp.
388
410
.
28.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.
29.
Yang
,
Z.
,
Peng
,
X. F.
, and
Ye
,
P.
,
2008
, “
Numerical and Experimental Investigation of Two Phase Flow During Boiling in a Coiled Tube
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1003
1016
.
30.
Sen
,
A. K.
, and
Davis
,
S. H.
,
1982
, “
Steady Thermocapillary Flows in Two-Dimensional Slots
,”
J. Fluid Mech.
,
121
(
1
), pp.
163
186
.
31.
Saldi, Z. S., 2011, “
Marangoni Driven Free Surface Flows in Liquid Weld Pools
,”
Ph.D. dissertation
, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid:8401374b-9e9c-4d25-86b7-fc445ec73d27?collection=research
32.
Francois
,
M. M.
,
Sicilian
,
J. M.
, and
Kothe
,
D. B.
, 2006, “
Modeling of Thermocapillary Forces Within a Volume Tracking Algorithm
,”
Modeling of Casting, Welding and Advanced Solidification Processes–XI
, Opio, France, May 28–June 2, pp.
935
942
.https://www.researchgate.net/publication/276919120_Modeling_of_Thermocapillary_Forces_within_a_Volume_Tracking_Algorithm
33.
Son
,
G.
,
2014
, “
A Sharp-Interface Level-Set Method for Analysis of Marangoni Effect on Microdroplet Evaporation
,”
Int. Commun. Heat Mass
,
58
, pp.
156
165
.
34.
Yamamoto
,
T.
,
Okano
,
Y.
, and
Dost
,
S.
,
2017
, “
Validation of the S-CLSVOF Method With the Density-Scaled Balanced Continuum Surface Force Model in Multiphase Systems Coupled With Thermocapillary Flows
,”
Int. J. Numer. Methods Fluids
,
83
(
3
), pp.
223
244
.
35.
Magnini
,
M.
,
Pulvirenti
,
B.
, and
Thome
,
J. R.
,
2013
, “
Numerical Investigation of Hydrodynamics and Heat Transfer of Elongated Bubbles During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
59
(
1
), pp.
451
471
.
36.
Pan
,
Z.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2016
, “
A Saturated-Interface-Volume Phase Change Model for Simulating Flow Boiling
,”
Int. J. Heat Mass Transfer
,
93
, pp.
945
956
.
37.
Li
,
S.
,
Chen
,
R.
,
Zhu
,
X.
, and
Liao
,
Q.
,
2016
, “
Numerical Investigation of the Marangoni Convection During the Liquid Column Evaporation in Microchannels Caused by IR Laser Heating
,”
Int. J. Heat Mass Transfer
,
101
, pp.
970
980
.
38.
Han
,
Y.
, and
Shikazono
,
N.
,
2009
, “
Measurement of the Liquid Film Thickness in Micro Tube Slug Flow
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
842
853
.
39.
Luo
,
Y.
,
Zhang
,
J.
,
Li
,
W.
,
Sokolova
,
E.
,
Li
,
Y.
, and
Minkowycz
,
W. J.
,
2017
, “
Numerical Investigation of the Bubble Growth in Horizontal Rectangular Microchannels
,”
Numer. Heat Transfer, Part A
,
71
(
12
), pp.
1175
1188
.
40.
Han
,
Y.
,
Shikazono
,
N.
, and
Kasagi
,
N.
,
2012
, “
The Effect of Liquid Film Evaporation on Flow Boiling Heat Transfer in a Micro Tube
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
547
555
.
You do not currently have access to this content.