An experimental study using the liquid crystal thermography technique is conducted to investigate the convective heat transfer performance in jet impingement cooling using various porous media configurations. Aluminum porous foams are used in the present study. Four impinging jet configurations are considered: jet impingement (1) without porous media, (2) over the porous heat sink, (3) with porous obstacle case, and (4) through porous passage. These configurations are evaluated on the basis of the convective heat transfer enhancement for two different Reynolds numbers of 400 and 700. Jet impingement with porous heat sink showed deterioration in the average Nusselt number by 9.95% and 18.04% compared to jet impingement without porous media configuration for Reynolds numbers of 400 and 700, respectively. Jet impingement with porous obstacles showed a very negligible enhancement in the average Nusselt number by 3.48% and 2.73% for Reynolds numbers of 400 and 700, respectively. However, jet impingement through porous passage configuration showed a maximum enhancement in the average Nusselt number by 52.71% and 74.68% and stagnation Nusselt numbers by 58.08% and 53.80% compared to the jet impingement without porous medium for Reynolds numbers of 400 and 700, respectively. Within the porous properties considered, it is observed that by decreasing the permeability and porosity the convective heat transfer performance tends to increase.

References

1.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1965
, “
The Role of Turbulence in Determining the Heat-Transfer Characteristics of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
8
(
10
), pp.
1261
1272
.
2.
Sparrow
,
E. M.
, and
Wong
,
T. C.
,
1975
, “
Impingement Transfer Coefficients Due to Initially Laminar Slot Jets
,”
Int. J. Heat Mass Transfer
,
18
(
5
), pp.
597
605
.
3.
Lin
,
Z. H.
,
Chou
,
Y. J.
, and
Hung
,
Y. H.
,
1997
, “
Heat Transfer Behaviors of a Confined Slot Jet Impingement
,”
Int. J. Heat Mass Transfer
,
40
(
5
), pp.
1095
1107
.
4.
Yan
,
Y.
, and
Owen
,
J. M.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
29
35
.
5.
Yan
,
W. M.
,
Mei
,
S. C.
,
Liu
,
H. C.
,
Soong
,
C. Y.
, and
Yang
,
W. J.
,
2004
, “
Measurement of Detailed Heat Transfer on a Surface Under Arrays of Impinging Elliptic Jets by a Transient Liquid Crystal Technique
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5235
5245
.
6.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2007
, “
Jet Impingement Heat Transfer—Part I: Mean and Root-Mean-Square Heat Transfer and Velocity Distributions
,”
Int. J. Heat Mass Transfer
,
50
(
17
), pp.
3291
3301
.
7.
Gulati
,
P.
,
Katti
,
V.
, and
Prabhu
,
S. V.
,
2009
, “
Influence of the Shape of the Nozzle on Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Air Jet
,”
Int. J. Therm. Sci.
,
48
(
3
), pp.
602
617
.
8.
Al-Sanea
,
S.
,
1992
, “
A Numerical Study of the Flow and Heat Transfer Characteristics of an Impinging Laminar Slot-Jet Including Cross-Flow Effects
,”
Int. J. Heat Mass Transfer
,
35
(
10
), pp.
2501
2513
.
9.
Chiriac
,
V. A.
, and
Ortega
,
A.
,
2002
, “
A Numerical Study of the Unsteady Flow and Heat Transfer in a Transitional Confined Slot Jet Impinging on an Isothermal Surface
,”
Int. J. Heat Mass Transfer
,
45
(
6
), pp.
1237
1248
.
10.
Behnia
,
M.
,
Parneix
,
S.
,
Shabany
,
Y.
, and
Durbin
,
P. A.
,
1999
, “
Numerical Study of Turbulent Heat Transfer in Confined and Unconfined Impinging Jets
,”
Int. J. Heat Fluid Flow
,
20
(
1
), pp.
1
9
.
11.
Zhao
,
C. Y.
,
2012
, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
55
(
13
), pp.
3618
3632
.
12.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
,
2005
, “
Numerical Study of Confined Slot Jet Impinging on Porous Metallic Foam Heat Sin
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4685
4694
.
13.
Shih
,
W. H.
,
Chiu
,
W. C.
, and
Hsieh
,
W. H.
,
2006
, “
Height Effect on Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks
,”
ASME J. Heat Transfer
,
128
(
6
), pp.
530
537
.
14.
Fu
,
W. S.
, and
Huang
,
H. C.
,
1997
, “
Thermal Performance of Different Shape Porous Blocks Under an Impinging Jet
,”
Int. J. Heat Mass Transfer
,
40
(
10
), pp.
2261
2272
.
15.
Yakkatelli
,
R.
,
Wu
,
Q.
, and
Fleischer
,
A. S.
,
2010
, “
A Visualization Study of the Flow Dynamics of a Single Round Jet Impinging on Porous Media
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1008
1015
.
16.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
,
2007
, “
Forced Convection of Metallic Foam Heat Sink Under Laminar Slot Jet Confined by Parallel Wall
,”
Heat Transfer Eng.
,
28
(
5
), pp.
484
495
.
17.
Marafie
,
A.
,
Khanafer
,
K.
,
Al-Azmi
,
B.
, and
Vafai
,
K.
,
2008
, “
Non-Darcian Effects on the Mixed Convection Heat Transfer I—A Metallic Porous Block With a Confined Slot Jet
,”
Numer. Heat Transfer, Part A
,
54
(
7
), pp.
665
685
.
18.
De Lemos
,
M. J. S.
, and
Fischer
,
C.
,
2008
, “
Thermal Analysis of an Impinging Jet on a Plate With and Without a Porous Layer
,”
Numer. Heat Transfer, Part A
,
54
(
11
), pp.
1022
1041
.
19.
Kumar
,
C. S.
, and
Pattamatta
,
A.
,
2015
, “
A Numerical Study of Convective Heat Transfer Enhancement With Jet Impingement Cooling Using Porous Obstacles
,”
J. Enhanced Heat Transfer
,
22
(
4
), pp. 303–328.
20.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2013
, “
Convection Heat Transfer From Aluminium and Copper Foams in a Vertical Channel—An Experimental Study
,”
Int. J. Therm. Sci.
,
64
, pp.
1
10
.
21.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(1), pp.
3
8
.
You do not currently have access to this content.