A phase change heat transfer from liquid to gas is studied in nanoscopic framework using molecular dynamics. Water on structured Si substrate is observed from molecular viewpoint after employing heat flux at a constant rate. Initially, we observe that water settles down on the substrate occupying the free space within the notch to obtain its static shape maintaining intramolecular configuration based on attractive and repulsive forces in neighboring hydroxyl bonds. Upon applying heat flux, we observe that the molecular vibration increases which repels neighbors to make the packing loose. Molecular dilution initiated at the notch and then proceeds to the rest domain. Progressive loosening of the molecules leads to the formation of vapor bubbles which increase in size with time. The rate of growth of this bubble is studied as a function of surface geometry parameters such as notch height, notch width, notch type, and notch spacing. Present simulations enrich the knowledge of surface characteristics on boiling heat transfer from fundamental principle in the molecular domain.

References

1.
Lin
,
L.
,
Udell
,
K.
, and
Pisano
,
A.
,
1994
, “
Liquid-Vapor Phase Transition and Bubble Formation in Micro Structures
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
1
), pp.
52
59
.
2.
Lin
,
L. W.
,
1998
, “
Microscale Thermal Bubble Formation: Thermophysical Phenomena and Applications
,”
Microscale Thermophys. Eng.
,
2
(
2
), pp.
71
85
.
3.
Van Den Broek
,
D. M.
, and
Elwenspoek
,
M.
,
2008
, “
Bubble Nucleation in an Explosive Micro-Bubble Actuator
,”
J. Micromech. Microeng.
,
18
(
6
), p.
064003
.
4.
Forster
,
K. E.
, and
Greif
,
R.
,
1959
, “
Heat Transfer to a Boiling Liquid-Mechanism and Correlations
,” U. S. Atomic Energy Commission, Oak Ridge, TN, Technical Report No.
58-40
.https://www.osti.gov/scitech/servlets/purl/4298039-UHKSbJ/
5.
Bankoff
,
S. G.
,
1959
, “
On the Mechanism of Subcooled Nucleate Boiling
,” California Institute of Technology, Pasadena, CA, Jet Propulsion Lab Memo. 30-8.
6.
Han
,
C.-Y.
, and
Griffith
,
P.
,
1965
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling—Part II: The heat Flux-Temperature Difference Relation
,”
Int. J. Heat Mass Transfer
,
8
(
6
), pp.
905
914
.
7.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1969
, “
A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics
,”
ASME J. Heat Transfer
,
91
(
2
), pp.
245
250
.
8.
Haramura
,
Y.
, and
Katto
,
Y.
,
1983
, “
A New Hydrodynamic Model of Critical Heat Flux, Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquids
,”
Int. J. Heat Mass Transfer
,
26
(
3
), pp.
389
399
.
9.
Pasamehmetoglu
,
K. O.
,
Chappidi
,
P. R.
,
Unal
,
C.
, and
Nelson
,
R. A.
,
1993
, “
Saturated Pool Nucleate Boiling Mechanisms at High Heat Fluxes
,”
Int. J. Heat Mass Transfer
,
36
(
15
), pp.
3859
3868
.
10.
Kinjo
,
T.
, and
Matsumoto
,
M.
,
1998
, “
Cavitation Processes and Negative Pressure
,”
Fluid Phase Equilib.
,
144
(
1–2
), pp.
343
350
.
11.
Maruyama
,
S.
, and
Kimura
,
T.
,
1999
, “
A Molecular Dynamics Simulation of a Bubble Nucleation on Solid Surface
,”
Trans. Jpn. Soc. Mech. Eng. Ser. B
,
65
(638), pp. 3461–3467.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.5929&rep=rep1&type=pdf
12.
Kinjo
,
T.
,
Gao
,
G. T.
, and
Zeng
,
X. C.
,
2000
, “
Bubble Nucleation in Confined Liquids: Molecular Dynamics Study
,”
Progr. Theor. Phys. Suppl.
,
138
, pp.
732
733
.
13.
Nagayama
,
G.
,
Tsuruta
,
T.
, and
Cheng
,
P.
,
2006
, “
Molecular Dynamics Simulation on Bubble Formation in a Nanochannel
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4437
4443
.
14.
Chen
,
M.
,
Yang
,
J.
,
Gao
,
Y.
,
Chen
,
Y.
, and
Li
,
D.
,
2014
, “
Molecular Dynamics Studies of Homogeneous and Heterogeneous Thermal Bubble Nucleation
,”
ASME J. Heat Transfer
,
136
(
4
), p.
041502
.
15.
Novak
,
B. R.
,
Maginn
,
E. J.
, and
Mccready
,
M. J.
,
2008
, “
An Atomistic Simulation Study of the Role of Asperities and Indentations on Heterogeneous Bubble Nucleation
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042411
.
16.
Berendsen
,
H. J. C.
,
Grigera
,
J. R.
, and
Straatsma
,
T. P.
,
1987
, “
The Missing Term in Effective Pair Potentials
,”
J. Phys. Chem.
,
91
(
24
), pp.
6269
6271
.
17.
Ryckaert
,
J. P.
,
Ciccotti
,
G.
, and
Berendsen
,
H. J.
,
1977
, “
Numerical Integration of the Cartesian Equations of Motion of a System With Constraints: Molecular Dynamics of n-Alkanes
,”
J. Comput. Phys.
,
23
(
3
), pp.
327
341
.
18.
Song
,
F. H.
,
Li
,
B. Q.
, and
Liu
,
C.
,
2013
, “
Molecular Dynamics Simulation of Nanosized Water Droplet Spreading in an Electric Field
,”
Langmuir
,
29
(
13
), pp.
4266
4274
.
19.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
20.
Li
,
F.
,
Gonzalez-Avila
,
S. R.
,
Nguyen
,
D. M.
, and
Ohl
,
C.
,
2017
, “
Oscillate Boiling From Microheaters, Physics
,”
Rev. Fluids
,
2
, p.
014007
.
21.
Dou
,
Y.
,
Zhigilei
,
L. V.
,
Winograd
,
N.
, and
Garrison
,
B. J.
,
2001
, “
Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description
,”
J. Phys. Chem. A
,
105
(
12
), pp.
2748
2755
.
22.
Mao
,
Y.
, and
Zhang
,
Y.
,
2013
, “
Molecular Simulation on Explosive Boiling of Water on a Hot Copper Plate
,”
ASME
Paper No. HT2013-17001.
23.
Yi
,
P.
,
Poulikakos
,
D.
,
Walther
,
J.
, and
Yadigaroglu
,
G.
,
2002
, “
Molecular Dynamics Simulation of Vaporization of an Ultra-Thin Liquid Argon Layer on a Surface
,”
Int. J. Heat Mass Transfer
,
45
(
10
), pp.
2087
2100
.
You do not currently have access to this content.