We use the configuration of film boiling on a horizontal tube positioned in a stagnant pool of saturated diethyl carbonate (DEC, (C2H5O)2CO) to study DEC decomposition at temperatures up to 1500 K. The composition of bubbles that percolate through the liquid pool is measured and the results are used to infer the decomposition reactions. The results show that below tube temperatures of about 1100 K, the decomposition products are ethylene (C2H4), carbon dioxide (CO2), and ethanol (EtOH, C2H5OH) with a molar ratio nC2H4/nCO2∼1, which is consistent with a first-order decomposition process. At higher temperatures, nC2H4/nCO2 > 1 which is explained by an additional route to forming C2H4 from radicals in the system (created by EtOH decomposition) attacking DEC. The presence of H2, CO, CH4, and C2H6 in the product stream was noted at all temperatures examined with concentrations that increased from trace values at low temperatures to values comparable to the DEC unimolecular process at the highest temperatures. Formation of a carbon layer on the tube was observed but did not appear to influence the decomposition process. A scale analysis shows that the rate constant controls decomposition compared to the residence time, which has a weaker dependence on temperature.

References

1.
Eckhoff
,
R. K.
,
2016
, “
Water Vapour Explosions—A Brief Review
,”
J. Loss Prev. Process Ind.
,
40
, pp.
188
198
.
2.
Anderson
,
M. H.
,
Meekunnasombat
,
P.
, and
Corradini
,
M. L.
,
2001
, “
Experimental Behavior of Molten SnxLiy Impacted by a Vertical Column of Water
,”
Fusion Sci. Technol.
,
39
, pp.
966
969
.
3.
Vanderhaegen
,
M.
, and
Le Belguett
,
A.
,
2014
, “
Review on Sodium Boiling Phenomena in Reactor Systems
,”
Nucl. Sci. Eng.
,
176
(2), pp.
115
137
.
4.
Witte
,
L. C.
,
Cox
,
J. E.
, and
Bouvier
,
J. E.
,
1970
, “
The Vapour Explosion
,”
J. Met.
,
22
(2), pp.
39
44
.
5.
Okyuama
,
K.
, and
Iida
,
Y.
,
1994
, “
Film-Boiling Heat Transfer With a Catalytic Decomposition Reaction
,”
Jpn. Soc. Mech. Eng. Int. J., Ser. B
,
37
(1), pp.
123
131
.
6.
Zhukov
,
S. A.
,
Rafeev
,
V. A.
,
Afansev
,
S. Y.
,
Echmaev
,
S. B.
, and
Korsunksii
,
B. L.
,
2004
, “
Characteristic Features of the Implementation of Film Boiling of Organic Liquids
,”
Heat Transfer Res.
,
35
(
1–2
), pp.
171
179
.
7.
Epstein
,
M.
,
Leung
,
J. C.
,
Hauser
,
G. M.
, and
Henry
,
R. E.
,
1984
, “
Film Boiling on a Reactive Surface
,”
Int. J. Heat Mass Transfer
,
27
(8), pp.
1365
1378
.
8.
Choi
,
S. R.
,
Evangelista
,
J. W.
,
Avedisian
,
C. T.
, and
Tsang
,
W.
,
2011
, “
Experimental Study of Chemical Conversion of Methanol and Ethylene Glycol in a Film Boiling Reactor
,”
Int. J. Heat Mass Transfer
,
54
(1–3), pp.
500
511
.
9.
Kuo
,
W. C.
,
Avedisian
,
C. T.
,
Choi
,
K. W.
, and
Tsang
,
W.
,
2014
, “
On Using Film Boiling to Thermally Decompose Liquid Organic Chemicals: Application to Ethyl Acetate as a Model Compound
,”
Int. J. Heat Mass Transfer
,
68
, pp.
456
465
.
10.
Evangelista
,
J. W.
,
Avedisian
,
C. T.
, and
Tsang
,
W.
,
2012
, “
Thermal and Catalytic Decomposition of Aqueous Ethylene Glycol Mixtures by Film Boiling
,”
Int. J. Heat Mass Transfer
,
55
(23–24), pp.
6425
6434
.
11.
Wang
,
J. P.
,
Qian
,
J. M.
,
Qiao
,
G. J.
, and
Jin
,
Z. H.
,
2006
, “
Improvement of Film Boiling Chemical Vapor Infiltration Process for Fabrication of Large Size C/C Composite
,”
Mater. Lett.
,
60
(9–10), pp.
1269
1272
.
12.
Wang
,
J. P.
,
Qian
,
J. M.
,
Qiao
,
G. J.
, and
Jin
,
Z. H.
,
2006
, “
Microstructure of C/C Composites Prepared by Chemical Vapor Infiltration Method With Vaporized Kerosene as a Precursor
,”
Mater. Sci. Eng. A
,
419
(1–2), pp.
162
167
.
13.
Zhang
,
Y.
,
Gamo
,
M. N.
, and
Nakagawa
,
K.
,
2002
, “
Synthesis of Aligned Carbon Nanotubes in Organic Liquids
,”
J. Mater. Res.
,
17
(9), pp.
2457
2464
.
14.
Zhang
,
Y.
,
Gamo
,
M. N.
,
Xiao
,
M. N.
, and
Ando
,
C. Y. T.
,
2002
, “
Liquid Phase Synthesis of Carbon Nanotubes
,”
Physica B
,
323
(1–4), pp.
293
295
.
15.
Shukal
,
K.
, and
Srivastava
,
V. C.
,
2016
, “
Diethyl Carbonate: Critical Review of Synthesis, Routes, Catalysts Used and Engineering Aspects
,”
RSC Adv.
,
6
(39), pp.
32624
32645
.
16.
Lewandowski
,
A.
, and
Swiderska-Mocek
,
A.
,
2009
, “
Ionic Liquids and Electrolytes for Li-Ion Batteries—An Overview of Electrochemical Studies
,”
J. Power Sources
,
194
(2), pp.
601
609
.
17.
Roh
,
N. S.
,
Dunn
,
B. C.
,
Eyring
,
E. M.
,
Pugmire
,
R. J.
, and
Meuzelaar
,
H. L. C.
,
2003
, “
Production of Diethyl Carbonate From Ethanol and Carbon Monoxide Over a Heterogeneous Catalytic Flow Reactor
,”
Fuel Process. Technol.
,
83
(1–3), pp.
27
38
.
18.
Pacheco
,
M. A.
, and
Marshall
,
C. L.
,
1997
, “
Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a Fuel Additive
,”
Energy Fuels
,
11
(1), pp.
2
29
.
19.
Malecki
,
H.
,
Deng
,
G.
,
Anani
,
A.
, and
Howard
,
J.
,
1999
, “
Thermal Stability Studies of Li-Ion Cells and Components
,”
J. Electrochem. Soc.
,
146
(9), pp.
3224
3229
.
20.
Domi
,
Y.
,
Ochida
,
M.
,
Tsubouchi
,
S.
,
Nakagawa
,
H.
,
Yamanaka
,
T.
,
Doi
,
T.
,
Abe
,
T.
, and
Ogumi
,
Z.
,
2011
, “
In Situ AFM Study of Surface Film Formation on the Edge Plane of HOPG for Lithium-Ion Batteries
,”
J. Phys. Chem. C
,
115
(51), pp.
25484
25489
.
21.
Matsushita
,
T.
,
Dokko
,
K.
, and
Kanamura
,
K.
,
2005
, “
In Situ FT-IR Measurement for Electrochemical Oxidation of Electrolyte With Ethylene Carbonate and Diethyl Carbonate on Cathode Active Material Used in Rechargeable Lithium Batteries
,”
J. Power Sources
,
146
(1–2), pp.
360
364
.
22.
Wilke
,
S.
,
Schweitzer
,
B.
,
Khateeb
,
S.
, and
Al-Hallaj
,
S.
,
2017
, “
Preventing Thermal Runaway Propagation in Lithium Ion Battery Packs Using a Phase Change Composite Material: An Experimental Study
,”
J. Power Sources
,
340
, pp.
51
59
.
23.
Harrisa
,
S. J.
,
Timmonsa
,
A.
, and
Pitz
,
W. J.
,
2009
, “
A Combustion Chemistry Analysis of Carbonate Solvents Used in Li-Ion Batteries
,”
J. Power Sources
,
193
(2), pp.
855
858
.
24.
Spotnitz
,
R. M.
,
Weaver
,
J.
,
Yeduvaka
,
G.
,
Doughty
,
D. H.
, and
Roth
,
E. P.
,
2007
, “
Simulation of Abuse Tolerance of Lithium-Ion Battery Packs
,”
J. Power Sources
,
163
(2), pp.
1080
1086
.
25.
Kim
,
G. H.
,
Pesaran
,
A.
, and
Spotnitz
,
R.
,
2007
, “
A Three-Dimensional Thermal Abuse Model for Lithium-Ion Cells
,”
J. Power Sources
,
170
(2), pp.
476
489
.
26.
Mandal
,
B. K.
,
Padhi
,
A. K.
,
Shi
,
Z.
,
Chakraborty
,
S.
, and
Filler
,
R.
,
2006
, “
Thermal Runaway Inhibitors for Lithium Battery Electrolytes
,”
J. Power Sources
,
161
(2), pp.
1341
1345
.
27.
Bigley
,
D. B.
, and
Wren
,
C. M.
,
1972
, “
Pyrolysis of Carbonates—Part 1: The Gas-Phase Pyrolysis of Some Symmetrical Primary Alkyl Carbonates
,”
J. Chem. Soc. Perkin Trans.
,
2
(2), pp.
926
928
.
28.
Mogi
,
R.
,
Inaba
,
M.
,
Iriyama
,
Y.
,
Abe
,
T.
, and
Ogumi
,
Z.
, 2003, “Study on the Decomposition Mechanism of Alkyl Carbonate on Lithium Metal by Pyrolysis-Gas Chromatography-Mass Spectroscopy,”
J. Power Sources
,
119–121
, pp. 597–603.
29.
Cross
,
J. T. D.
,
Hunter
,
R.
, and
Stimson
,
R.
,
1976
, “
The Thermal Decomposition of Simple Carbonate Esters
,”
Aust. J. Chem.
,
29
(7), pp.
1477
1481
.
30.
Notario
,
R.
,
Quijano
,
J.
,
Sanchez
,
C.
, and
Velez
,
E.
,
2005
, “
Theoretical Study of the Mechanism of Thermal Decomposition of Carbonate Esters in the Gas Phase
,”
J. Phys. Org. Chem.
,
18
(2), pp.
134
141
.
31.
Gordon
,
A. S.
, and
Norris
,
W. P.
,
1965
, “
A Study of the Pyrolysis of Methyl Ethyl and Diethyl Carbonates in the Gas Phase
,”
J. Phys. Chem.
,
69
(9), pp.
3013
3017
.
32.
Ritchie
,
P. D.
,
1935
, “
Studies in Pyrolysis—Part III: The Pyrolysis of Carbonic and Sulphurous Esters
,”
J. Chem. Soc.
,
400
(
Pt. 1
), pp.
1054
1061
.
33.
Herzler
,
J.
,
Manion
,
J. A.
, and
Tsang
,
W.
,
1997
, “
Single-Pulse Shock Tube Studies of the Decomposition of Ethoxy Compounds
,”
J. Phys. Chem. A.
,
101
(30), pp.
5494
5499
.
34.
Lienhard
,
J. H.
, IV
, and
Lienhard
,
J. H.
, V
,
2003
,
A Heat Transfer Textbook
, 3rd ed.,
Phlogiston
,
Cambridge, MA
, pp.
429
431
, 468, 483–486.
35.
Special Metals, 2008, “
Inconel Alloy 600
,” Special Metals Corp., Huntington, WV, accessed Dec. 7, 2017, http://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-600.pdf
36.
Bradfield
,
W. S.
,
1966
, “
Liquid-Solid Contact in Stable Film Boiling
,”
Ind. Eng. Chem. Fundam.
,
5
(
2
), pp.
200
204
.
37.
Dhuga
,
D. S.
, and
Winterton
,
R. H. S.
,
1986
, “
Measurement of Liquid-Solid Contact in Boiling
,”
J. Phys. E: Sci. Instrum.
,
19
(1), pp.
69
75
.
38.
Kikuchi
,
Y.
,
Ebisus
,
T.
, and
Michiyoshi
,
I.
,
1992
, “
Measurement of Liquid-Solid Contact in Film Boiling
,”
Int. J. Heat Mass Transfer
,
35
(
6
), pp.
1589
1594
.
39.
Chang
,
K. H.
, and
Witte
,
L. C.
,
1990
, “
Liquid-Solid Contact During Flow Film Boiling of Subcooled Freon-11
,”
ASME J. Heat Transfer
,
112
(2), pp.
465
471
.
40.
Avedisian
,
C. T.
,
1985
, “
The Homogeneous Nucleation Limits of Liquids
,”
J. Phys. Chem. Ref. Data
,
14
(
3
), pp.
695
720
.
41.
Park
,
J.
,
Zhu
,
R. S.
, and
Lin
,
M. C.
,
2002
, “
Thermal Decomposition of Ethanol—I: Ab Initio Molecular Orbital/Rice–Ramsperger–Kassel–Marcus Prediction of Rate Constant and Product Branching Ratios
,”
J. Chem. Phys.
,
117
(
7
), pp.
3224
3231
.
42.
Amran, T., Abdullay, T., and Croiset, E., 2014, “
Evaluation of an Inconel-625 Reactor and its Wall Effects on Ethanol Reforming in Supercritical Water
,”
Ind. Eng. Chem. Res.
,
53
(6), pp. 2121–2129.
43.
Bromley
,
L. A.
,
1950
, “
Heat Transfer in Stable Film Boiling
,”
Chem. Eng. Prog.
,
46
(
5
), pp.
221
227
.
44.
Urban
,
B. J.
,
Avedisian
,
C. T.
, and
Tsang
,
W.
,
2006
, “
The Film Boiling Reactor: A New Environment for Chemical Processing
,”
AIChE J.
,
52
(
7
), pp.
2582
2595
.
45.
Benson
,
S. W.
,
1960
,
The Foundation of Chemical Kinetics
,
McGraw-Hill
,
New York
, Chap. 11.
You do not currently have access to this content.