In this work, the condensation of refrigerants on a single, high-density, low-fin tube and full-sized shell and tube condensers were investigated experimentally. The low-fin tube had an external fin density of 56 fins per inch (fpi) and fin height 1.023 mm. Another three-dimensional (3D) finned tube was also tested for comparison. The condensing heat transfer coefficient of the refrigerant R134a was first investigated outside a single horizontal tube at saturation temperature of 40 °C. The overall heat transfer coefficients of the two tubes were similar in magnitude. The condensing heat transfer coefficient of the low-fin tube was 16.3–25.2% higher than that of 3D enhanced tube. The experiments of the two condensers mounted with low-fin and 3D enhanced tubes were then conducted in centrifugal and screw chiller test rigs. It was found that chillers with the two different condensers generally had the same refrigeration capacity under the same experiment conditions. The refrigeration capacity of the screw chiller was smaller. It had fewer tube rows and elicited fewer inundation effects owing to the falling condensate. The heat transfer coefficients of the condensers with R134a in centrifugal chillers equipped with high-density low-finned tubes were higher than those in the screw chillers. The total number of tubes for low-fin tube condensers, in the two chillers, was reduced by approximately 15% compared with the use of domestic advanced condensers equipped with the 3D enhanced tubes.

References

1.
Webb
,
R. L.
, and
Kim
,
N. H.
,
2005
,
Principle of Enhanced Heat Transfer
,
Taylor & Francis
,
Boca Raton, FL
.
2.
Fernandez Seara
,
J.
,
Uhia
,
F. J.
,
Diz
,
R.
, and
Dopazo
,
J. A.
,
2010
, “
Vapour Condensation of R22 Retrofit Substitutes R417A, R422A and R422D on CuNi Turbo C Tubes
,”
Int. J. Refrig.
,
33
(
1
), pp.
148
157
.
3.
Zhang
,
Z.
,
Li
,
Q.
,
Xu
,
T.
,
Fang
,
X.
, and
Gao
,
X.
,
2012
, “
Condensation Heat Transfer Characteristics of Zeotropic Refrigerant Mixture R407C on Single, Three-Row Petal-Shaped Finned Tubes and Helically Baffled Condenser
,”
Appl. Therm. Eng.
,
39
, pp.
63
69
.
4.
Ji
,
W.-T.
,
Zhao
,
C.-Y.
,
Zhang
,
D.-C.
,
Li
,
Z.-Y.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2014
, “
Condensation of R134a Outside Single Horizontal Titanium, Cupronickel (B10 and B30), Stainless Steel and Copper Tubes
,”
Int. J. Heat Mass Transfer
,
77
, pp.
194
201
.
5.
Ji
,
W.-T.
,
Numata
,
M.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2015
, “
Nucleate Pool Boiling and Filmwise Condensation Heat Transfer of R134a on the Same Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
86
, pp.
744
754
.
6.
Zhang
,
D. C.
,
Ji
,
W. T.
, and
Tao
,
W. Q.
,
2007
, “
Condensation Heat Transfer of HFC134a on Horizontal Low Thermal Conductivity Tubes
,”
Int. Commun. Heat Mass Transfer
,
34
(
8
), pp.
917
923
.
7.
Ji
,
W. T.
,
Zhang
,
D. C.
,
Feng
,
N.
,
Guo
,
J. F.
,
Numata
,
M.
,
Xi
,
G. N.
, and
Tao
,
W. Q.
,
2010
, “
Nucleate Pool Boiling Heat Transfer of R134a and R134a-PVE Lubricant Mixtures on Smooth and Five Enhanced Tubes
,”
ASME J. Heat Transfer
,
132
(
11
), p.
011502
.
8.
Ji
,
W.-T.
,
Qu
,
Z.-G.
,
Li
,
Z.-Y.
,
Guo
,
J.-F.
,
Zhang
,
D.-C.
, and
Tao
,
W.-Q.
,
2011
, “
Pool Boiling Heat Transfer of R134a on Single Horizontal Tube Surfaces Sintered With Open-Celled Copper Foam
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2248
2255
.
9.
Ji
,
W.-T.
,
Li
,
Z.-Y.
,
Qu
,
Z.-G.
,
Guo
,
J.-F.
,
Zhang
,
D.-C.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2015
, “
Film Condensing Heat Transfer of R134a on Single Horizontal Tube Coated With Open Cell Copper Foam
,”
Appl. Therm. Eng.
,
76
, pp.
335
343
.
10.
Ji
,
W.-T.
,
Jacobi
,
A. M.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2015
, “
Summary and Evaluation on Single-Phase Heat Transfer Enhancement Techniques of Liquid Laminar and Turbulent Pipe Flow
,”
Int. J. Heat Mass Transfer
,
88
, pp.
735
754
.
11.
Ji
,
W.-T.
,
Zhao
,
C.-Y.
,
Zhang
,
D.-C.
,
Yoshioka
,
S.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2016
, “
Effect of Vapor Flow on the Falling Film Evaporation of R134a Outside a Horizontal Tube Bundle
,”
Int. J. Heat Mass Transfer
,
92
, pp.
1171
1181
.
12.
Ji
,
W.-T.
,
Jacobi
,
A. M.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2017
, “
Summary and Evaluation on the Heat Transfer Enhancement Techniques of Gas Laminar and Turbulent Pipe Flow
,”
Int. J. Heat Mass Transfer
,
111
, pp.
467
483
.
13.
Zhao
,
C.-Y.
,
Jin
,
P.-H.
,
Ji
,
W.-T.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2017
, “
Experimental Investigations of R134a and R123 Falling Film Evaporation on Enhanced Horizontal Tubes
,”
Int. J. Refrig.
,
75
, pp.
190
203
.
14.
Marto
,
P.
,
1988
, “
An Evaluation of Film Condensation on Horizontal Integral-Fin Tubes
,”
ASME J. Heat Transfer
,
110
(
4b
), pp.
1287
1305
.
15.
Gregorig
,
R.
,
1954
, “
Film Condensation on Finely Rippled Surfaces With Consideration of Surface Tension
,”
Z. Angew. Math. Phys.
,
5
, pp.
36
49
.
16.
Kedzierski
,
M.
, and
Webb
,
R.
,
1990
, “
Practical Fin Shapes for Surface-Tension-Drained Condensation
,”
ASME J. Heat Transfer
,
112
(
2
), pp.
479
485
.
17.
Webb
,
R. L.
, and
Murawski
,
C. G.
,
1990
, “
Row Effect for R-11 Condensation on Enhanced Tubes
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
768
776
.
18.
Al-Badri
,
A. R.
,
Bär
,
A.
,
Gotterbarm
,
A.
,
Rausch
,
M. H.
, and
Fröba
,
A. P.
,
2016
, “
The Influence of Fin Structure and Fin Density on the Condensation Heat Transfer of R134a on Single Finned Tubes and in Tube Bundles
,”
Int. J. Heat Mass Transfer
,
100
, pp.
582
589
.
19.
Honda
,
H.
,
Uchima
,
B.
,
Nozu
,
S.
,
Torigoe
,
E.
, and
Imai
,
S.
,
1992
, “
Film Condensation of R-113 on Staggered Bundles of Horizontal Finned Tubes
,”
ASME J. Heat Transfer
,
114
(
2
), pp.
442
449
.
20.
Cheng
,
W. Y.
, and
Wang
,
C. C.
,
1994
, “
Condensation of R134a on Enhanced Tubes
,”
ASHRAE Trans.
,
100
(
Pt. 2
), pp.
809
817
.
21.
Gstoehl
,
D.
, and
Thome
,
J.
,
2006
, “
Film Condensation of R-134a on Tube Arrays With Plain and Enhanced Surfaces—Part II: Empirical Prediction of Inundation Effects
,”
ASME J. Heat Transfer
,
128
(
1
), pp.
33
43
.
22.
Gstoehl
,
D.
, and
Thome
,
J.
,
2006
, “
Film Condensation of R-134a on Tube Arrays With Plain and Enhanced Surfaces—Part I: Experimental Heat Transfer Coefficients
,”
ASME J. Heat Transfer
,
128
(
1
), pp.
21
32
.
23.
Belghazi
,
M.
,
Bontemps
,
A.
, and
Marvillet
,
C.
,
2002
, “
Filmwise Condensation of a Pure Fluid and a Binary Mixture in a Bundle of Enhanced Surface Tubes
,”
Int. J. Therm. Sci.
,
41
(
7
), pp.
631
638
.
24.
Park
,
K.-J.
,
Kang
,
D. G.
, and
Jung
,
D.
,
2011
, “
Condensation Heat Transfer Coefficients of R1234yf on Plain, Low Fin, and Turbo-C Tubes
,”
Int. J. Refrig.
,
34
(
1
), pp.
317
321
.
25.
Yang
,
S. M.
, and
Tao
,
W. Q.
,
2006
,
Heat Transfer
,
Higher Education Press
,
Beijing, China
.
26.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flows
,”
Int. J. Chem. Eng.
,
16
(2), pp.
359
368
.
27.
Ji
,
W. T.
,
Zhang
,
D. C.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2011
, “
Prediction of Fully Developed Turbulent Heat Transfer of Internal Helically Ribbed Tubes—An Extension of Gnielinski Equation
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1375
1384
.
28.
Rose
,
J. W.
,
2004
, “
Heat-Transfer Coefficients, Wilson Plots and Accuracy of Thermal Measurements
,”
Exp. Therm. Fluid Sci.
,
28
(
2–3
), pp.
77
86
.
29.
Ji
,
W.-T.
,
Zhao
,
C.-Y.
,
Zhang
,
D.-C.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2012
, “
Influence of Condensate Inundation on Heat Transfer of R134a Condensing on Three Dimensional Enhanced Tubes and Integral-Fin Tubes With High Fin Density
,”
Appl. Therm. Eng.
,
38
, pp.
151
159
.
30.
Kline
,
S. J.
, and
Mcclintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
7
), pp.
3
9
.
31.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
, 1(
1
), pp.
3
17
.
32.
Cheng
,
B.
, and
Tao
,
W. Q.
,
1994
, “
Experimental Study of R-152a Film Condensation on Single Horizontal Smooth Tube and Enhanced Tubes
,”
ASME J. Heat Transfer
,
116
(
1
), pp.
266
270
.
33.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2011
,
Heat Mass Transfer
,
McGraw-Hill
,
New York
.
34.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, New York.
35.
Nusselt
,
W.
,
1916
, “
Die oberflachencondensation des wasserdampfes
,”
VDI
,
60
, pp.
541
569
.
36.
Jung
,
D.
,
Kim
,
C.-B.
,
Hwang
,
S.-M.
, and
Kim
,
K.-K.
,
2003
, “
Condensation Heat Transfer Coefficients of R22, R407C, and R410A on a Horizontal Plain, Low Fin, and Turbo-C Tubes
,”
Int. J. Refrig.
,
26
(
4
), pp.
485
491
.
37.
Park
,
K.-J.
, and
Jung
,
D.
,
2007
, “
Condensation Heat Transfer Coefficients of HCFC22, R410A, R407C and HFC134a at Various Temperatures on a Plain Horizontal Tube
,”
J. Mech. Sci. Technol.
,
21
(
5
), pp.
804
813
.
You do not currently have access to this content.