Abstract

The paper gives a comprehensive study on the space fractional boundary layer flow and heat transfer over a stretching sheet with variable thickness, and the variable magnetic field is applied. Novel governing equations with left and right Riemann–Liouville fractional derivatives subject to irregular region are formulated. By introducing new variables, the boundary conditions change as the traditional ones. Solutions of the governing equations are obtained numerically where the shifted Grünwald formulae are applied. Good agreement is obtained between the numerical solutions and exact solutions which are constructed by introducing new source items. Dynamic characteristics with the effects of involved parameters on the velocity and temperature distributions are shown and discussed by graphical illustrations. Results show that the velocity boundary layer is thicker for a larger fractional parameter or a smaller magnetic parameter, while the temperature boundary layer is thicker for a larger fractional parameter, a smaller exponent parameter, or a larger magnetic parameter. Moreover, it is thicker at a smaller y and thinner at a larger y for the velocity boundary layer with a larger exponent parameter while for the velocity and temperature boundary layers with a smaller weight coefficient.

References

1.
Prandtl, L., 1905, “
Über die Fiüssigkeitsbewegung bei sehr kleiner Reibung
,” Verh. d. III. Int. Math. Kongr., pp. 484–491.
2.
Fisher
,
E. G.
,
1976
,
Extrusion of Plastics
,
Wiley
,
New York
.
3.
Altan
,
T.
,
Oh
,
S.
, and
Gegel
,
H.
,
1979
,
Metal Forming Fundamentals and Applications
,
American Society for Metals
,
Materials Park, OH
.
4.
Karwe
,
M. V.
, and
Jaluria
,
Y.
,
1991
, “
Numerical Simulation of Thermal Transport Associated With a Continuously Moving Flat Sheet in Materials Processing
,”
ASME J. Heat Transfer
,
113
(
3
), pp.
612
619
.
5.
Sakiadis
,
B. C.
,
1961
, “
Boundary-Layer Behavior on Continuous Solid Surface: I. Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow
,”
J. AIChE
,
7
(
1
), pp.
26
28
.
6.
Sakiadis
,
B. C.
,
1961
, “
Boundary-Layer Behavior on Continuous Solid Surface: II. Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow
,”
J. AIChE.
,
7
(
1
), pp.
221
225
.
7.
Han
,
S. H.
,
Zheng
,
L. C.
,
Li
,
C. R.
, and
Zhang
,
X. X.
,
2014
, “
Coupled Flow and Heat Transfer in Viscoelastic Fluid With Cattaneo-Christov Heat Flux Model
,”
Appl. Math. Lett.
,
38
, pp.
87
93
.
8.
Zhang
,
C. L.
,
Zheng
,
L. C.
,
Zhang
,
X. X.
, and
Chen
,
G.
,
2015
, “
MHD Flow and Radiation Heat Transfer of Nanofluids in Porous Media With Variable Surface Heat Flux and Chemical Reaction
,”
Appl. Math. Model.
,
39
(
1
), pp.
165
181
.
9.
Li
,
J.
,
Liu
,
L.
,
Zheng
,
L. C.
, and
Bin-Mohsin
,
B.
,
2016
, “
Unsteady MHD Flow and Radiation Heat Transfer of Nanofluid in a Finite Thin Film With Heat Generation and Thermophoresis
,”
J. Taiwan Inst. Chem. E.
,
67
, pp.
226
234
.
10.
Cao
,
Z.
,
Zhao
,
J. H.
,
Wang
,
Z. J.
,
Liu
,
F. W.
, and
Zheng
,
L. C.
,
2016
, “
MHD Flow and Heat Transfer of Fractional Maxwell Viscoelastic Nanofluid Over a Moving Plate
,”
J. Mol. Liq.
,
222
, pp.
1121
1127
.
11.
Prasannakumara
,
B. C.
,
Shashikumar
,
N. S.
, and
Venkatesh
,
P.
,
2017
, “
Boundary Layer Flow and Heat Transfer of Fluid Particle Suspension With Nanoparticles Over a Nonlinear Stretching Sheet Embedded in a Porous Medium
,”
Nonlinear Eng.
,
6
(
3
), pp.
1
12
.
12.
Xenos
,
M.
, and
Pop
,
I.
,
2017
, “
Radiation Effect on the Turbulent Compressible Boundary Layer Flow With Adverse Pressure Gradient
,”
Appl. Math. Comput.
,
299
, pp.
153
164
.
13.
Sandeep
,
N.
,
Animasaun
,
I. L.
, and
Ali
,
M. E.
,
2017
, “
Unsteady Liquid Film Flow of Electrically Conducting Magnetic-Nanofluids in the Vicinity of a Thin Elastic Sheet
,”
J. Comput. Theor. Nanos.
,
14
(
2
), pp.
1140
1147
.
14.
Sandeep
,
N.
,
Chamkha
,
A. J.
, and
Animasaun
,
I. L.
,
2017
, “
Numerical Exploration of Magnetohydrodynamic Nanofluid Flow Suspended With Magnetite Nanoparticles
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
9
), pp.
3635
3644
.
15.
Manjunatha
,
P. T.
,
Gireesha
,
B. J.
, and
Prasannakumara
,
B. C.
,
2017
, “
Effect of Radiation on Flow and Heat Transfer of MHD Dusty Fluid Over a Stretching Cylinder Embedded in a Porous Medium in Presence of Heat Source
,”
Int. J. Appl. Comput. Math.
,
3
(
1
), pp.
293
310
.
16.
Fang
,
T. G.
,
Zhang
,
J.
, and
Zhong
,
Y. F.
,
2012
, “
Boundary Layer Flow Over a Stretching Sheet With Variable Thickness
,”
Appl. Math. Comput.
,
218
(
13
), pp.
7241
7252
.
17.
Subhashini
,
S. V.
,
Sumathi
,
R.
, and
Pop
,
I.
,
2013
, “
Dual Solutions in a Thermal Diffusive Flow Over a Stretching Sheet With Variable Thickness
,”
Int. Commun. Heat Mass Transfer
,
48
, pp.
61
66
.
18.
Asghar
,
S.
,
Ahmad
,
A.
, and
Alsaedi
,
A.
,
2013
, “
Flow of a Viscous Fluid Over an Impermeable Shrinking Sheet
,”
Appl. Math. Lett.
,
26
(
12
), pp.
1165
1168
.
19.
Ramesh
,
G. K.
,
Prasannakumara
,
B. C.
,
Gireesha
,
B. J.
, and
Rashidi
,
M. M.
,
2016
, “
Casson Fluid Flow Near the Stagnation Point Over a Stretching Sheet With Variable Thickness and Radiation
,”
J. Appl. Fluid Mech.
,
9
(
3
), pp.
1115
1122
.
20.
Hayat
,
T.
,
Qayyum
,
S.
,
Alsaedi
,
A.
, and
Ahmad
,
B.
,
2017
, “
Magnetohydrodynamic (MHD) Nonlinear Convective Flow of Walters-B Nanofluid Over a Nonlinear Stretching Sheet With Variable Thickness
,”
Int. J. Heat Mass Transfer
,
110
, pp.
506
514
.
21.
Ajayi
,
T. M.
,
Omowaye
,
A. J.
, and
Animasaun
,
I. L.
,
2017
, “
Viscous Dissipation Effects on the Motion of Casson Fluid Over an Upper Horizontal Thermally Stratified Melting Surface of a Paraboloid of Revolution: Boundary Layer Analysis
,”
J. Appl. Math.
,
2017
, pp.
1
13
.
22.
Koriko
,
O. K.
,
Omowaye
,
A. J.
,
Sandeep
,
N.
, and
Animasaun
,
I. L.
,
2017
, “
Analysis of Boundary Layer Formed on an Upper Horizontal Surface of a Paraboloid of Revolution Within Nanofluid Flow in the Presence of Thermophoresis and Brownian Motion of 29 Nm CuO
,”
Int. J. Mech. Sci.
,
124–125
, pp.
22
36
.
23.
Hayat
,
T.
,
Khan
,
M. I.
,
Farooq
,
M.
,
Alsaedi
,
A.
,
Waqas
,
M.
, and
Yasmeen
,
T.
,
2016
, “
Impact of Cattaneo-Christov Heat Flux Model in Flow of Variable Thermal Conductivity Fluid Over a Variable Thicked Surface
,”
Int. J. Heat Mass Transfer
,
99
, pp.
702
710
.
24.
Abdel-wahed
,
M. S.
,
Elbashbeshy
,
E. M. A.
, and
Emam
,
T. G.
,
2015
, “
Flow and Heat Transfer Over a Moving Surface With Non-Linear Velocity and Variable Thickness in a Nanofluids in the Presence of Brownian Motion
,”
Appl. Math. Comput.
,
254
, pp.
49
62
.
25.
Ramesh
,
G. K.
,
Prasannakumara
,
B. C.
,
Gireesha
,
B. J.
, and
Reddy Gorla
,
R. S.
,
2015
, “
MHD Stagnation Point Flow of Nanofluid Towards a Stretching Surface With Variable Thickness and Thermal Radiation
,”
J. Nanofluids
,
4
(
2
), pp.
247
253
.
26.
Kumara
,
B. C. P.
,
Ramesh
,
G. K.
,
Chamkha
,
A. J.
, and
Gireesha
,
B. J.
,
2015
, “
Stagnation-Point Flow of a Viscous Fluid Towards a Stretching Surface With Variable Thickness and Thermal Radiation
,”
Int. J. Ind. Math.
,
7
(1), pp.
77
85
.http://ijim.srbiau.ac.ir/article_6202.html
27.
Guo
,
C. J.
,
Zheng
,
L. C.
,
Zhang
,
C. L.
,
Chen
,
X. H.
, and
Zhang
,
X. X.
,
2016
, “
Impact of Velocity Slip and Temperature Jump of Nanofluid in the Flow Over a Stretching Sheet With Variable Thickness
,”
Z. Naturforsch.
,
71
(5), pp.
1
13
.
28.
Animasaun
,
I. L.
,
2016
, “
47 nm Alumina-Water Nanofluid Flow Within Boundary Layer Formed on Upper Horizontal Surface of Paraboloid of Revolution in the Presence of Quartic Autocatalysis Chemical Reaction
,”
Alex. Eng. J.
,
55
(
3
), pp.
2375
2389
.
29.
Chen
,
S.
,
Liu
,
F.
,
Jiang
,
X.
,
Turner
,
I.
, and
Anh
,
V.
,
2015
, “
A Fast Semi-Implicit Difference Method for a Nonlinear Two-Sided Space-Fractional Diffusion Equation With Variable Diffusivity Coefficients
,”
Appl. Math. Comput.
,
257
, pp.
591
601
.
30.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
31.
Meral
,
F. C.
,
Royston
,
T. J.
, and
Magin
,
R.
,
2010
, “
Fractional Calculus in Viscoelasticity: An Experimental Study
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
4
), pp.
939
945
.
32.
Chen
,
W.
,
Zhang
,
J. J.
, and
Zhang
,
J. Y.
,
2013
, “
A Variable-Order Time-Fractional Derivative Model for Chloride Ions Sub-Diffusion in Concrete Structures
,”
Fract. Calc. Appl. Anal.
,
16
(1), pp.
76
92
.
33.
Song
,
D. Y.
, and
Jiang
,
T. Q.
,
1998
, “
Study on the Constitutive Equation With Fractional Derivative for the Viscoelastic Fluids-Modified Jeffreys Model and Its Application
,”
Rheol. Acta.
,
37
(
5
), pp.
512
517
.
34.
Du
,
M. L.
,
Wang
,
Z. H.
, and
Hu
,
H. Y.
,
2013
, “
Measuring Memory With the Order of Fractional Derivative
,”
Sci. Rep.
,
3
(
1
), p. 3431.
35.
Baskin
,
E.
, and
Iomin
,
A.
,
2004
, “
Superdiffusion on a Comb Structure
,”
Phys. Rev. Lett.
,
93
(
12
), p.
120603
.
36.
Hayat
,
T.
,
Hussain
,
Z.
,
Alsaedi
,
A.
, and
Asghar
,
S.
,
2016
, “
Carbon Nanotubes Effects in the Stagnation Point Flow Towards a Nonlinear Stretching Sheet With Variable Thickness
,”
Adv. Powder Technol.
,
27
(
4
), pp.
1677
1688
.
37.
Ajayi
,
T. M.
,
Omowaye
,
A. J.
, and
Animasaun
,
I. L.
,
2017
, “
Effects of Viscous Dissipation and Double Stratification on MHD Casson Fluid Flow Over a Surface With Variable Thickness: Boundary Layer Analysis
,”
Int. J. Eng. Res. Africa
,
28
, pp.
73
89
.
38.
Devi
,
S. P. A.
, and
Prakash
,
M.
,
2014
, “
Steady Nonlinear Hydromagnetic Flow Over a Stretching Sheet With Variable Thickness and Variable Surface Temperature
,”
J. KSIAM
,
18
(
3
), pp.
245
256
.
39.
Hejazi
,
H.
,
Moroney
,
T.
, and
Liu
,
F.
,
2014
, “
Stability and Convergence of a Finite Volume Method for the Space Fractional Advection-Dispersion Equation
,”
J. Comput. Appl. Math.
,
255
, pp.
684
697
.
40.
Zhang
,
X. X.
,
Crawford
,
J. W.
,
Deeks
,
L. K.
,
Stutter
,
M. I.
,
Bengough
,
A. G.
, and
Young
,
I. M.
,
2005
, “
A Mass Balance Based Numerical Method for the Fractional Advection-Dispersion Equation: Theory and Application
,”
Water Resour. Res.
,
41
(
7
), p.
W05439
.
41.
Liu
,
L.
,
Zheng
,
L. C.
,
Liu
,
F. W.
, and
Zhang
,
X. X.
,
2016
, “
Anomalous Convection Diffusion and Wave Coupling Transport of Cells on Comb Frame With Fractional Cattaneo-Christov Flux
,”
Commun. Nonlinear Sci. Numer. Simul.
,
38
, pp.
45
58
.
42.
Liu
,
F.
,
Turner
,
I.
,
Anh
,
V.
,
Yang
,
Q.
, and
Burrage
,
K.
,
2013
, “
A Numerical Method for the Fractional Fitzhugh-Nagumo Monodomain Model
,”
Anziam J.
,
54
, pp.
608
629
.
43.
Liu
,
L.
,
Zheng
,
L. C.
,
Liu
,
F. W.
, and
Zhang
,
X. X.
,
2016
, “
An Improved Heat Conduction Model With Riesz Fractional Cattaneo-Christov Flux
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1191
1197
.
44.
Khader
,
M. M.
, and
Megahed
,
A. M.
,
2014
, “
Differential Transformation Method for Studying Flow and Heat Transfer Due to Stretching Sheet Embedded in Porous Medium With Variable Thickness, Variable Thermal Conductivity, and Thermal Radiation
,”
Appl. Math. Mech.-Engl. Ed.
,
35
(
11
), pp.
1387
1400
.
45.
Zhao
,
J. H.
,
Zheng
,
L. C.
,
Zhang
,
X. X.
, and
Liu
,
F. W.
,
2016
, “
Unsteady Natural Convection Boundary Layer Heat Transfer of Fractional Maxwell Viscoelastic Fluid Over a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
97
, pp.
760
766
.
46.
Liu
,
L.
,
Zheng
,
L. C.
, and
Zhang
,
X. X.
,
2016
, “
Fractional Anomalous Diffusion With Cattaneo-Christov Flux Effects in a Comb-like Structure
,”
Appl. Math. Model.
,
40
(
13–14
), pp.
6663
6675
.
47.
Liu
,
L.
,
Zheng
,
L. C.
, and
Liu
,
F. W.
,
2017
, “
Temporal Anomalous Diffusion and Drift of Particles in a Comb Backbone With Fractional Cattaneo-Christov Flux
,”
J. Stat. Mech.
,
2017
, p.
043208
.
48.
Liu
,
F.
,
Zhuang
,
P.
, and
Burrage
,
K.
,
2012
, “
Numerical Methods and Analysis for a Class of Fractional Advection-Dispersion Models
,”
Comput. Math. Appl.
,
64
(
10
), pp.
2990
3007
.
49.
Zhao
,
J. H.
,
Zheng
,
L. C.
,
Zhang
,
X. X.
, and
Liu
,
F. W.
,
2016
, “
Convection Heat and Mass Transfer of Fractional MHD Maxwell Fluid in a Porous Medium With Soret and Dufour Effects
,”
Int. J. Heat Mass Transfer
,
103
, pp.
203
210
.
50.
Salahuddin
,
T.
,
Malik
,
M. Y.
,
Hussain
,
A.
,
Bilal
,
S.
, and
Awais
,
M.
,
2016
, “
MHD Flow of Cattanneo-Christov Heat Flux Model for Williamson Fluid Over a Stretching Sheet With Variable Thickness: Using Numerical Approach
,”
J. Magn. Magn. Mater.
,
401
, pp.
991
997
.
You do not currently have access to this content.