For the heat transfer of pebble or granular beds (e.g., high temperature gas-cooled reactors (HTGR)), the particle thermal radiation is an important part. Using the subcell radiation model (SCM), which is a generic theoretical approach to predict effective thermal conductivity (ETC) of particle radiation, particle-scale investigation of the nuclear packed pebble beds filled with monosized or multicomponent pebbles is performed here. When the radial porosity distribution is considered, the ETC of the particle radiation decreases significantly at near-wall region. It is shown that radiation exchange factor increases with the surface emissivity. The results of the SCM under different surface emissivity are in good agreement with the existing correlations. The discrete heat transfer model in particle scale is presented, which combines discrete element method (DEM) and particle radiation model, and is validated by the transient experimental results. Compared with the discrete simulation results of polydisperse beds, it is found that the SCM with the effective particle diameter can be used to analyze behavior of the radiation in polydisperse beds.

References

1.
Gao
,
Z. Y.
, and
Shi
,
L.
,
2002
, “
Thermal Hydraulic Calculation of the HTR-10 for the Initial and Equilibrium Core
,”
Nucl. Eng. Des.
,
218
(
1–3
), pp.
51
64
.
2.
Zhang
,
Z. Y.
,
Dong
,
Y. J.
,
Li
,
F.
,
Zhang
,
Z. M.
,
Wang
,
H. T.
,
Huang
,
X. J.
,
Li
,
H.
,
Liu
,
B.
,
Wu
,
X. X.
,
Wang
,
H.
,
Diao
,
X. Z.
,
Zhang
,
H. Q.
, and
Wang
,
J. H.
,
2016
, “
The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM) Demonstration Power Plant: An Engineering and Technological Innovation
,”
Engineering
,
2
(
1
), pp.
112
118
.
3.
Zhang
,
Z. Y.
,
Wu
,
Z. X.
,
Wang
,
D. Z.
,
Xu
,
Y. H.
,
Sun
,
Y. L.
,
Li
,
F.
, and
Dong
,
Y. J.
,
2009
, “
Current Status and Technical Description of Chinese 2 × 250 MWth HTR-PM Demonstration Plant
,”
Nucl. Eng. Des.
,
239
(
7
), pp.
1212
1219
.
4.
Laubitz
,
M. J.
,
1959
, “
Thermal Conductivity of Powders
,”
Can. J. Phys.
,
37
(
7
), pp.
798
808
.
5.
Kunii
,
D.
, and
Smith
,
J.
,
1960
, “
Heat Transfer Characteristics of Porous Rocks
,”
AIChE J.
,
6
(
1
), pp.
71
78
.
6.
Godbee
,
H. W.
, and
Ziegler
,
W. T.
,
1966
, “
Thermal Conductivities of MgO, Al2O3, and ZrO2 Powders to 850 °C—Part II: Theoretical
,”
J. Appl. Phys.
,
37
(
1
), pp.
56
65
.
7.
Botterill
,
J. S. M.
,
Salway
,
A. G.
, and
Teoman
,
Y.
,
1989
, “
The Effective Thermal Conductivity of High Temperature Particulate Beds—Part II: Model Predictions and the Implication of the Experimental Values
,”
Int. J. Heat Mass Transfer
,
32
(
3
), pp.
595
609
.
8.
Fedina
,
I.
,
Litovsky
,
E.
,
Shapiro
,
M.
, and
Shavit
,
A.
,
1997
, “
Thermal Conductivity of Packed Beds of Refractory Particles: Experimental Results
,”
J. Am. Ceram. Soc.
,
80
(
8
), pp.
2100
2108
.
9.
Nasr
,
K.
,
Viskanta
,
R.
, and
Ramadhyani
,
S.
,
1994
, “
An Experimental Evaluation of the Effective Thermal Conductivities of Packed Beds at High Temperatures
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
829
837
.
10.
Gupta
,
M.
,
Yang
,
J.
, and
Roy
,
C.
,
2002
, “
Modelling the Effective Thermal Conductivity in Polydispersed Bed Systems: A Unified Approach Using the Linear Packing Theory and Unit Cell Model
,”
Can. J. Chem. Eng.
,
80
(
5
), pp.
830
839
.
11.
Zbogar
,
A.
,
Frandsen
,
F. J.
,
Jensen
,
P. A.
, and
Glarborg
,
P.
,
2005
, “
Heat Transfer in Ash Deposits: A Modelling Tool-Box
,”
Prog. Energy Combust. Sci.
,
31
(
5–6
), pp.
371
421
.
12.
Rousseau
,
P. G.
,
du Toit
,
C. G.
,
van Antwerpen
,
W.
, and
van Antwerpen
,
H. J.
,
2014
, “
Separate Effects Tests to Determine the Effective Thermal Conductivity in the PBMR HTTU Test Facility
,”
Nucl. Eng. Des.
,
271
, pp.
444
458
.
13.
Ren
,
C.
,
Yang
,
X. T.
, and
Jiang
,
S. Y.
,
2016
, “
Development of Chinese HTR-PM Pebble Bed Equivalent Conductivity Test Facility
,”
ATW. Int. Z. Kernenerg.
,
61
(1), pp.
23
27
.https://inis.iaea.org/search/search.aspx?orig_q=RN:47040381
14.
Ren
,
C.
,
Yang
,
X.
,
Jia
,
H.
,
Jiang
,
Y.
, and
Xiong
,
W.
,
2017
, “
Theoretical Analysis of Effective Thermal Conductivity for the Chinese HTR-PM Heat Transfer Test Facility
,”
Appl. Sci.
,
7
(
1
), p.
76
.
15.
Schotte
,
W.
,
1960
, “
Thermal Conductivity of Packed Beds
,”
AIChE J.
,
6
(
1
), pp.
63
67
.
16.
Wu
,
H.
,
Gui
,
N.
,
Yang
,
X.
,
Tu
,
J.
, and
Jiang
,
S.
,
2016
, “
Effect of Scale on the Modeling of Radiation Heat Transfer in Packed Pebble Beds
,”
Int. J. Heat Mass Transfer
,
101
, pp.
562
569
.
17.
Chen
,
J. C.
, and
Churchill
,
S. W.
,
1963
, “
Radiant Heat Transfer in Packed Beds
,”
AIChE J.
,
9
(
1
), pp.
35
41
.
18.
Argento
,
C.
, and
Bouvard
,
D.
,
1996
, “
A Ray Tracing Method for Evaluating the Radiative Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
39
(
15
), pp.
3175
3180
.
19.
van Antwerpen
,
W.
,
du Toit
,
C. G.
, and
Rousseau
,
P. G.
,
2010
, “
A Review of Correlations to Model the Packing Structure and Effective Thermal Conductivity in Packed Beds of Mono-Sized Spherical Particles
,”
Nucl. Eng. Des.
,
240
(
7
), pp.
1803
1818
.
20.
Rycroft
,
C. H.
,
Grest
,
G. S.
,
Landry
,
J. W.
, and
Bazant
,
M. Z.
,
2006
, “
Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor
,”
Phys. Rev. E
,
74
(
2
), p. 021306.
21.
Wu
,
H.
,
Gui
,
N.
,
Yang
,
X.
,
Tu
,
J.
, and
Jiang
,
S.
,
2016
, “
Effects of Particle Size and Region Width on the Mixing and Dispersion of Pebbles in Two-Region Pebble Bed
,”
Granular Matter
,
18
(
4
), p.
76
.
22.
Wu
,
H.
,
Gui
,
N.
,
Yang
,
X.
,
Tu
,
J.
, and
Jiang
,
S.
,
2017
, “
Numerical Simulation of Heat Transfer in Packed Pebble Beds: CFD-DEM Coupled With Particle Thermal Radiation
,”
Int. J. Heat Mass Transfer
,
110
, pp.
393
405
.
23.
Wu
,
H.
,
Gui
,
N.
,
Yang
,
X.
,
Tu
,
J.
, and
Jiang
,
S.
,
2018
, “
A Smoothed Void Fraction Method for CFD-DEM Simulation of Packed Pebble Beds With Particle Thermal Radiation
,”
Int. J. Heat Mass Transfer
,
118
, pp.
275
288
.
24.
Wu
,
H.
,
Gui
,
N.
,
Yang
,
X.
,
Tu
,
J.
, and
Jiang
,
S.
,
2017
, “
Modeling Effective Thermal Conductivity of Thermal Radiation for Nuclear Packed Pebble Beds
,”
ASME. J. Heat Transfer
,
140
(4), p. 042701.
25.
De Beer
,
M.
,
Du Toit
,
C. G.
, and
Rousseau
,
P. G.
,
2017
, “
A Methodology to Investigate the Contribution of Conduction and Radiation Heat Transfer to the Effective Thermal Conductivity of Packed Graphite Pebble Beds, Including the Wall Effect
,”
Nucl. Eng. Des.
,
314
, pp.
67
81
.
26.
Talukdar
,
P.
, and
Mishra
,
S. C.
,
2003
, “
Transient Conduction-Radiation Interaction in a Planar Packed Bed With Variable Porosity
,”
Numer. Heat Transfer, Part A
,
44
(
3
), pp.
281
297
.
27.
Wu
,
J. W.
, and
Chu
,
H. S.
,
1999
, “
Combined Conduction and Radiation Heat Transfer in Plane-Parallel Packed Beds With Variable Porosity
,”
J. Quant. Spectrosc. Radiat. Transfer
,
61
(
4
), pp.
443
452
.
28.
Methnani
,
M.
, and
Tyobeka
,
B.
,
2013
,
Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis Related to the PBMR-400, PBMM, GT-MHR, HTR-10 and the ASTRA Critical Facility
,
International Atomic Energy Agency
,
Vienna, Austria
.
29.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2006
, “
Effective Thermal Conductivity of Rough Spherical Packed Beds
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3691
3701
.
30.
van Antwerpen
,
W.
,
Rousseau
,
P. G.
, and
du Toit
,
C. G.
,
2012
, “
Multi-Sphere Unit Cell Model to Calculate the Effective Thermal Conductivity in Packed Pebble Beds of Mono-Sized Spheres
,”
Nucl. Eng. Des.
,
247
, pp.
183
201
.
31.
White
,
S. M.
, and
Tien
,
C. L.
,
1987
, “
Analysis of Flow Channeling Near the Wall in Packed-Beds
,”
Warme Stoffubertrag
,
21
(
5
), pp.
291
296
.
32.
Amiri
,
A.
, and
Vafai
,
K.
,
1994
, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
939
954
.
33.
Vafai
,
K.
,
1984
, “
Convective Flow and Heat Transfer in Variable-Porosity Media
,”
J. Fluid Mech.
,
147
(
1
), pp.
233
259
.
34.
Du Toit
,
C. G.
,
2008
, “
Radial Variation in Porosity in Annular Packed Beds
,”
Nucl. Eng. Des.
,
238
(
11
), pp.
3073
3079
.
35.
Kaviany
,
M.
,
1991
,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
.
36.
Hunt
,
M. L.
, and
Tien
,
C. L.
,
1990
, “
Non-Darcian Flow, Heat and Mass-Transfer in Catalytic Packed-Bed Reactors
,”
Chem. Eng. Sci.
,
45
(
1
), pp.
55
63
.
37.
Benenati
,
R. F.
, and
Brosilow
,
C. B.
,
1962
, “
Void Fraction Distribution in Beds of Spheres
,”
AIChE J.
,
8
(
3
), pp.
359
361
.
38.
Mueller
,
G. E.
,
1992
, “
Radial Void Fraction Distributions in Randomly Packed Fixed Beds of Uniformly Sized Spheres in Cylindrical Containers
,”
Powder Technol.
,
72
(
3
), pp.
269
275
.
39.
De Klerk
,
A.
,
2003
, “
Voidage Variation in Packed Beds at Small Column to Particle Diameter Ratio
,”
AIChE J.
,
49
(
8
), pp.
2022
2029
.
40.
Theuerkauf
,
J.
,
Witt
,
P.
, and
Schwesig
,
D.
,
2006
, “
Analysis of Particle Porosity Distribution in Fixed Beds Using the Discrete Element Method
,”
Powder Technol.
,
165
(
2
), pp.
92
99
.
41.
Howell
,
J. R.
,
Menguc
,
M. P.
, and
Siegel
,
R.
,
2010
,
Thermal Radiation Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
42.
Wen
,
C. D.
, and
Mudawar
,
I.
,
2006
, “
Modeling the Effects of Surface Roughness on the Emissivity of Aluminum Alloys
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4279
4289
.
43.
King
,
J.
,
Jo
,
H.
,
Tirawat
,
R.
,
Blomstrand
,
K.
, and
Sridharan
,
K.
,
2017
, “
Effects of Surface Roughness, Oxidation, and Temperature on the Emissivity of Reactor Pressure Vessel Alloys
,”
Nucl. Technol.
,
200
(
1
), pp.
1
14
.
44.
Argo
,
W. B.
, and
Smith
,
J. M.
,
1953
, “
Heat Transfer in Packed Beds
,”
Chem. Eng. Prog.
,
49
(8), pp.
443
451
.
45.
Wakao
,
N.
, and
Kato
,
K.
,
1969
, “
Effective Thermal Conductivity of Packed Beds
,”
J. Chem. Eng. Jpn.
,
2
(
1
), pp.
24
33
.
46.
Ai
,
J.
,
Chen
,
J. F.
,
Rotter
,
J. M.
, and
Ooi
,
J. Y.
,
2011
, “
Assessment of Rolling Resistance Models in Discrete Element Simulations
,”
Powder Technol.
,
206
(
3
), pp.
269
282
.
47.
Thornton
,
C.
,
Cummins
,
S. J.
, and
Cleary
,
P. W.
,
2013
, “
An Investigation of the Comparative Behaviour of Alternative Contact Force Models During Inelastic Collisions
,”
Powder Technol.
,
233
, pp.
30
46
.
You do not currently have access to this content.