A vector–matrix differential equation is formulated using normal mode analysis from the governing equations of a three-dimensional anisotropic half space in presence of heat source and gravity. The corresponding solution is obtained with the help of eigenvalue approach. Numerical computations for displacement, thermal strain and stress component, temperature distribution are evaluated and presented graphically.

References

1.
Biot
,
M. A.
,
1956
, “
Thermoelasticity and Irreversible Thermodynamics
,”
J. Appl. Phys.
,
27
(
3
), pp.
240
253
.
2.
Lord
,
H. W.
, and
Shulman
,
Y.
,
1967
, “
A Generalized Dynamical Theory of Thermoelasticity
,”
J. Mech. Phys. Solids
,
15
(
5
), pp.
299
309
.
3.
Green
,
A. E.
, and
Lindsay
,
K. A.
,
1972
, “
Thermoelasticity
,”
J. Elasticity
,
2
(
1
), pp.
1
7
.
4.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1993
, “
Thermoelasticity Without Energy Dissipation
,”
Elasticity
,
31
(
3
), pp.
189
208
.
5.
Dhaliwal
,
R. S.
, and
Sherief
,
H. H.
,
1980
, “
Generalized Thermoelasticity for Anisotropic Media
,”
Q. Appl. Math.
,
33
(
1
), pp.
1
8
.
6.
Sherief
,
H. H.
, and
Anwar
,
M. N.
,
1986
, “
Problem in Generalized Thermoelasticity
,”
J. Therm. Stresses
,
9
, pp.
165
181
.
7.
Santra
,
S.
,
Das
,
N. C.
,
Kumar
,
R.
, and
Lahiri
,
A.
,
2015
, “
Three-Dimensional Fractional Order Generalized Thermoelastic Problem Under the Effect of Rotation in a Half-Space
,”
J. Therm. Stresses
,
38(3)
, pp.
309
324
.
8.
Bachher
,
M.
,
Sarkar
,
N.
, and
Lahiri
,
A.
,
2015
, “
State-Space Approach to 3D Generalised Thermoviscoelasticity Under Green and Naghdi Theory II
,”
Math. Models Eng.
,
1(2)
, pp.
111
124
.http://www.jve.lt/Vibro/MME-2015-1-2/MME00115120014.html
9.
Das
,
N. C.
, and
Lahir i
,
A.
,
2000
, “
Thermoelastic Interaction Due to Prescribed Pressure Inside a Spherical Cavity in an Unbounded Medium
,”
Indian J. Pure Appl. Math.
,
31
(
1
), pp.
1
35
.
10.
Abd-Alla
,
A. M.
,
Abo-Dahab
,
S. M.
, and
Al-Mullise
,
A.
,
2013
, “
Effects of Rotation and Gravity Field on Surface Waves in Fibre-Reinforced Thermoelastic Media Under Four Theories
,”
J. Appl. Math.
,
2013
, p.
562369
.
11.
Othman
,
M. I. A.
, and
Lotfy
,
K.
,
2013
, “
The Effect of Magnetic Field and Rotation of the 2-D Problem of a Fiber-Reinforced Thermoelastic Under Three Theories With Influence of Gravity
,”
Mech. Mater.
,
60
, pp.
129
143
.
12.
Othman
,
M. I. A.
, and
Song
,
Y. Q.
,
2006
, “
Effect of Rotation on the Reflection of Magneto-Thermoelastic Waves Under Thermoelasticity Without Energy Dissipation
,”
Acta Mech.
,
184
(
1–4
), pp.
189
204
.
13.
Ezzat
,
M. A.
,
Othman
,
M. I.
, and
El-Karamany
,
A.
,
2001
, “
Electromagnetic-Thermoelastic Plane Waves With Thermal Relaxation in a Medium of Perfect Conductivity
,”
J. Therm. Stresses
,
24
(5), pp.
411
432
.
14.
Sarkar
,
N.
, and
Lahiri
,
A.
,
2013
, “
The Effect of Gravity Field on Plane Waves in a Fiberreinforced Two Temperature Magneto-Thermoelastic Medium Under Lord-Shulman Theory
,”
J. Therm. Stresses
,
36
(
9
), pp.
895
914
.
15.
Pal
,
P.
, and
Kanoria
,
M.
,
2017
, “
Thermoelastic Wave Propagation in a Transversely Isotropic Thick Plate Under Green–Naghdi Theory Due to Gravitational Field
,”
J. Therm. Stresses
,
40
(
4
), pp.
470
485
.
16.
Deswal
,
S.
, and
Hooda
,
N.
,
2015
, “
A Two-Dimensional Problem for a Rotating Magneto-Thermoelastic Half-Space With Voids and Gravity in a Two-Temperature Generalized Thermoelasticity Theory
,”
J. Mech.
,
31
(
6
), pp. 639–651.
17.
Abd-Alla
,
A. M.
,
Abo-Dahab
,
S. M.
,
Hammad
,
H. A.
, and
Mahmoud
,
S. R.
,
2011
, “
On Generalized Magneto-Thermoelastic Rayleigh Waves in a Granular Medium Under Influence of Gravity Field and Initial Stress
,”
J. Vib. Control
,
17
(
1
), pp.
115
128
.
18.
Abouelregal
,
A. E.
, and
Abo-Dahab
,
S. M.
,
2012
, “
Dual Phase Lag Model of Magneto-Thermoelasticity Infinite Nonhomogeneous Solid Having a Spherical Cavity
,”
J. Therm. Stresses
,
35
(
9
), pp.
820
841
.
19.
Abo-Dahab
,
S. M.
, and
Salama
,
M. M.
,
2014
, “
A Plane Magnetothermoelastic Waves Reflection and Transmission Between Two Solid Media With External Heat Sources and Initial Stress
,”
J. Therm. Stresses
,
37
(
9
), pp.
1124
1151
.
20.
Abo-Dahab
,
S. M.
,
2015
, “
On Magnetic Field and Two Thermal Relaxation Times for p-Waves Propagation at Interface Between Two Solid Liquid Media Under Initial Stress and Heat Sources
,”
J. Comput. Theor. Nanosci.
,
12
(
3
), pp.
361
370
.
21.
Lofty
,
K.
,
2017
, “
Photothermal Waves for Two Temperature With a Semiconducting Medium Under Using a Dual-Phase-Lag Model and Hydrostatic Initial Stress
,”
Waves Random Complex Media
,
27
(
3
), pp.
482
501
.
22.
Lofty
,
K.
,
2016
, “
The Elastic Wave Motions for a Photothermal Medium of a Dual-Phase-Lag Model With an Internal Heat Source and Gravitational Field
,”
Can. J. Phys.
,
94
(
4
), pp.
400
409
.
23.
Lofty
,
K.
, and
Gabr
,
M. E.
,
2017
, “
Response of a Semiconducting Infinite Medium Under Two Temperature Theory With Photothermal Excitation Due to Laser Pulses
,”
Opt. Laser Technol.
,
97
, pp.
198
208
.
24.
Lofty
,
K.
, and
Hassan
,
W.
,
2014
, “
Normal Mode Method for Two-Temperature Generalized Thermoelasticity Under Thermal Shock Problem
,”
J. Therm. Stresses
,
37
(
5
), pp.
545
560
.
25.
Lofty
,
K.
,
2017
, “
A Novel Solution of Fractional Order Heat Equation for Photothermal Waves in a Semiconductor Medium With a Spherical Cavity
,”
Chaos, Solitons Fractals
,
99
, pp.
233
242
.
26.
Kh
,
L.
,
2014
, “
Two Temperature Generalized Magneto-Thermoelastic Interactions in an Elastic Medium Under Three Theories
,”
App. Math. Comp.
,
227
, pp.
871
888
.
27.
Youssef
,
H. M.
, and
Al-Lehaibi
,
E. A.
,
2011
, “
Fractional Order Generalized Thermoelastic Infinite Medium With Cylindrical Cavity Subjected to Harmonically Varying Heat
,”
Engineering
,
3
(
1
), pp.
32
37
.
28.
Lahiri
,
A.
,
Das
,
N. C.
,
Sarkar
,
S.
, and
Das
,
M.
,
2009
, “
Matrix Method of Solution of Coupled Differential Equations and It's Application to Generalized Thermoelasticity
,”
Bull. Calcutta Math. Soc.
,
101
(
6
), pp.
571
590
.
29.
Santra
,
S.
,
Das
,
N. C.
, and
Lahiri
,
A.
,
2017
, “
Dynamic Problem in 3D Thermoelastic Half-Space With Rotation in Context of G-N Type II and Type III
,”
Math. Models Eng.
,
3
(
1
), pp.
58
70
.
30.
Chattopadhaya
,
A.
, and
Rogerson
,
G. A.
,
2001
, “
Wave Reflection in Slightly Compressible, Finitely Deformed Elastic Media
,”
Arch. Appl. Mech.
,
71
(4–5), pp.
307
316
.
You do not currently have access to this content.