An investigation is made to study the Blasius flow of a nanofluid in the presence of homogeneous–heterogeneous chemical reactions. Here, the diffusion coefficients of the reactant and autocatalyst are considered to be in comparable sizes. The Buongiorno's mathematical model is applied in describing the behavior of nanofluids. Multiple solutions of the steady-state system of nonlinear ordinary differential equations are obtained. Results show that nanofluids significantly participate in the transport mechanism of the homogeneous–heterogeneous reactions, which play different roles in the procedures of homogeneous and heterogeneous reactions.
Issue Section:
Technical Brief
References
1.
Williams
, W. R.
, Stenzel
, M. T.
, Song
, X.
, and Schmidt
, L. D.
, 1991
, “Bifurcation Behavior in Homogeneous-Heterogeneous Combustion. I. Experimental Results Over Platinum
,” Combust. Flame
, 84
(3–4
), pp. 277
–291
.2.
Williams
, W. R.
, Zhao
, J.
, and Schmidt
, L. D.
, 1991
, “Ignition and Extinction of Surface and Homogeneous Oxidation of NH3 and CH4
,” AIChE. J.
, 37
(5
), pp. 641
–649
.3.
Merkin
, J. H.
, 1996
, “A Model for Isothermal Homogeneous-Heterogeneous Reactions in Boundary-Layer Flow
,” Mathl. Comput. Modell.
, 24
(8
), pp. 125
–136
.4.
Chaudhary
, M. A.
, and Merkin
, J. H.
, 1995
, “A Simple Isothermal Model for Homogeneous-Heterogeneous Reactions in Boundary-Layer Flow—I: Equal Diffusivities
,” Fluid Dyn. Res.
, 16
(6
), pp. 311
–333
.5.
Chaudhary
, M. A.
, and Merkin
, J. H.
, 1995
, “A Simple Isothermal Model for Homogeneous-Heterogeneous Reactions in Boundary-Layer Flow—II: Different Diffusivities for Reactant and Autocatalyst
,” Fluid Dyn. Res.
, 16
(6
), pp. 335
–359
.6.
Abbas
, Z.
, Sheikh
, M.
, and Pop
, I.
, 2015
, “Stagnation-Point Flow of a Hydromagnetic Viscous Fluid Over Stretching/Shrinking Sheet With Generalized Slip Condition in the Presence of Homogeneous-Heterogeneous Reactions
,” J. Taiwan Inst. Chem. Eng.
, 55
, pp. 69
–75
.7.
Abbas
, Z.
, and Sheikh
, M.
, 2017
, “Numerical Study of Homogeneous-Heterogeneous Reactions on Stagnation Point Flow of Ferrofluid With Non-Linear Slip Condition
,” Chin. J. Chem. Eng.
, 25
(1
), pp. 11
–17
.8.
Bachok
, N.
, Ishak
, A.
, and Pop
, I.
, 2011
, “On the Stagnation-Point Flow Towards a Stretching Sheet With Homogeneous-Heterogeneous Reactions Effects
,” Commun. Nonlinear Sci. Numer. Simul.
, 16
(11
), pp. 4296
–4302
.9.
Rana
, S.
, Mehmood
, R.
, and Akbar
, N. S.
, 2016
, “Mixed Convective Oblique Flow of a Casson Fluid With Partial Slip, Internal Heating and Homogeneous-Heterogeneous Reactions
,” J. Mol. Liq.
, 222
, pp. 1010
–1019
.10.
Sajid
, M.
, Iqbal
, S. A.
, Naveed
, M.
, and Abbas
, Z.
, 2017
, “Effect of Homogeneous-Heterogeneous Reactions and Magnetohydrodynamics on Fe3O4 Nanofluid for the Blasius Flow With Thermal Radiations
,” J. Mol. Liq.
, 233
, pp. 115
–121
.11.
Khana
, M. I.
, Hayat
, T.
, Khan
, M. I.
, and Alsaedi
, A.
, 2017
, “A Modified Homogeneous-Heterogeneous Reactions for MHD Stagnation Flow With Viscous Dissipation and Joule Heating
,” Int. J. Heat Mass Transfer
, 113
, pp. 310
–317
.12.
Xu
, H.
, 2017
, “A Homogeneous-Heterogeneous Reaction Model for Heat Fluid Flow in the Stagnation Region of a Plane Surface
,” Int. Commun. Heat Mass Transfer
, 87
, pp. 112
–117
.13.
Buongiorno
, J.
, 2006
, “Convective Transport in Nanofluids
,” ASME J. Heat Transfer
, 128
(3
), pp. 240
–250
.14.
Choi
, S.
, 1995
, “Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Developments and Applications of Non-Newtonian Flows
, D. A.
Siginer
and H. P.
Wang
, eds., American Society of Mechanical Engineers, New York, pp. 99
–105
.15.
Kameswaran
, P. K.
, Shaw
, S.
, Sibanda
, P.
, and Murthy
, P. V. S. N.
, 2013
, “Homogeneous-Heterogeneous Reactions in a Nanofluid Flow Due to a Porous Stretching Sheet
,” Int. J. Heat Mass Transfer
, 57
(2
), pp. 465
–472
.16.
Hayat
, T.
, Hussain
, Z.
, Muhammad
, T.
, and Alsaedi
, N. A.
, 2016
, “Effects of Homogeneous and Heterogeneous Reactions in Flow of Nanofluids Over a Nonlinear Stretching Surface With Variable Surface Thickness
,” J. Mol. Liq.
, 221
, pp. 1121
–1127
.17.
Zhang
, C.
, Zheng
, L.
, Zhang
, X.
, and Chen
, G.
, 2015
, “MHD Flow and Radiation Heat Transfer of Nanofluids in Porous Media With Variable Surface Heat Flux and Chemical Reaction
,” Appl. Math. Model.
, 39
(1
), pp. 165
–181
.18.
Zhao
, Q. K.
, Xu
, H.
, and Tao
, L. B.
, 2016
, “Homogeneous-Heterogeneous Reactions in Boundary-Layer Flow of a Nanofluid Near the forward stagnation point of a cylinder
,” ASME J. Heat Transfer
, 139
(3
), p. 034502
.19.
Naveed
, M.
, Abbas
, Z.
, and Sajid
, M.
, 2016
, “Thermophoresis and Brownian Effects on the Blasius Flow of a Nanofluid Due to a Curved Surface With Thermal Radiation
,” Eur. Phys. J. Plus
, 131
, p. 214
.20.
Naveed
, M.
, Abbas
, Z.
, and Sajid
, M.
, 2017
, “Nonlinear Radiative Heat Transfer in Blasius and Sakiadis Flows over a Curved Surface
,” Int. J. Thermophys.
, 38
, p. 14
.21.
Liao
, S. J.
, 1999
, “An Explicit, Totally Analytic Approximate Solution for Blasius Viscous Flow Problems
,” Int. J. Non-Linear Mech.
, 34
(4
), pp. 759
–778
.22.
Mohammadi
, F.
, Hosseini
, M. M.
, Dehgahn
, A.
, and Maalek Ghaini
, F. M.
, 2012
, “Numerical Solutions of Falkner-Skan Equation With Heat Transfer
,” Stud. Nonlinear Sci.
, 3
, pp. 86
–93
.Copyright © 2019 by ASME
You do not currently have access to this content.