Abstract

Energy cost contributes a large portion of the overall cost of desalinated water. Improving the energy efficiency of desalination plants is therefore a primary design goal. However, accurately evaluating and comparing the energy consumption of desalination plants that use different forms and grades of energy is difficult, especially for power–water coproduction systems in which primary energy (PE) consumption leads to both salable electricity and potable water. The power plant converts PE into grades of thermal energy and electricity usable by the desalination plant. To fully capture the thermodynamic and economic cost of energy, and to fairly compare desalination systems that use different grades of input energy, we must compare energy consumption not at the point where energy enters the desalination plant itself, but as PE consumption entering the power plant. This paper investigates a variety of metrics for comparing the energy and exergy consumption attributable to desalination in coproduction plants. Previous results have shown that reverse osmosis (RO) is approximately twice as efficient as multiple effect distillation (MED) on a PE basis. We then compare the PE consumption of MED and RO from a thermoeconomic perspective. The entropy generation at the RO membrane and in the MED effects are derived in similar terms, which enables a comparison of the overall heat transfer coefficient in an MED system to the permeability of an RO membrane. RO outperforms MED in energy efficiency because of a balance of material costs, transport coefficients, and cost of energy.

References

1.
Global Water Intelligence
, ed.,
2018
, “
DesalData: Cost Estimator
,”
Global Water Intelligence
,
Oxford, UK
, accessed Dec. 5, 2019, https://www.desaldata.com/cost_estimator
2.
El-Sayed
,
Y. M.
, and
Silver
,
R. S.
,
1980
, “
Fundamentals of Distillation
,”
Principles of Desalination
, 2nd ed., In
K. S.
Spiegler
and
A. D.
Laird
, eds.,
Academic Press
,
New York
, pp.
55
109
.
3.
Sommariva
,
C.
,
2010
,
Desalination and Advanced Water Treatment: Economics and Financing
,
Balaban Desalination Publications
,
Hopkinton, MA
.
4.
Altmann
,
T.
,
Robert
,
J.
,
Bouma
,
A.
,
Swaminathan
,
J.
, and
Lienhard
,
J. H.
,
2019
, “
Primary Energy and Exergy of Desalination Technologies in a Power-Water Cogeneration Scheme
,”
Appl. Energy
,
252
, p.
113319
.10.1016/j.apenergy.2019.113319
5.
Hawks
,
S. A.
,
Ramachandran
,
A.
,
Porada
,
S.
,
Campbell
,
P. G.
,
Suss
,
M. E.
,
Biesheuvel
,
P. M.
,
Santiago
,
J. G.
, and
Stadermann
,
M.
,
2019
, “
Performance Metrics for the Objective Assessment of Capacitive Deionization Systems
,”
Water Res.
,
152
, pp.
126
137
.10.1016/j.watres.2018.10.074
6.
Shahzad
,
M. W.
,
Burhan
,
M.
,
Son
,
H. S.
,
Jin Oh
,
S.
, and
Ng
,
K. C.
,
2018
, “
Desalination Processes Evaluation at Common Platform: A Universal Performance Ratio (UPR) Method
,”
Appl. Therm. Eng.
,
134
, pp.
62
67
.10.1016/j.applthermaleng.2018.01.098
7.
Shahzad
,
M. W.
,
Burhan
,
M.
,
Ybyraiymkul
,
D.
, and
Ng
,
K. C.
,
2019
, “
Desalination Processes' Efficiency and Future Roadmap
,”
Entropy
,
21
(
1
), p.
84
.10.3390/e21010084
8.
Lior
,
N.
,
2017
, “
Sustainability as the Quantitative Norm for Water Desalination Impacts
,”
Desalination
,
401
, pp.
99
111
.10.1016/j.desal.2016.08.008
9.
Wang
,
Z.
,
Horseman
,
T.
,
Straub
,
A. P.
,
Yip
,
N. Y.
,
Li
,
D.
,
Elimelech
,
M.
, and
Lin
,
S.
,
2019
, “
Pathways and Challenges for Efficient Solar-Thermal Desalination
,”
Sci. Adv.
,
5
(
7
), p.
eaax0763
.10.1126/sciadv.aax0763
10.
Pankratz
,
T.
,
2020
, “
Desal Year in Review
,”
Water Desalination Report
,
Global Water Intelligence
,
Oxford, UK
, pp.
1
7
.
11.
Mistry
,
K. H.
, and
Lienhard
,
J. H.
,
2013
, “
Generalized Least Energy of Separation for Desalination and Other Chemical Separation Processes
,”
Entropy
,
15
(
12
), pp.
2046
2080
.10.3390/e15062046
12.
Lienhard
,
J. H.
,
2019
, “
Energy Savings in Desalination Technologies: Reducing Entropy Generation by Transport Processes
,”
ASME J. Heat Transfer
,
141
(
7
), p.
072001
.10.1115/1.4043571
13.
Mistry
,
K. H.
,
McGovern
,
R. K.
,
Thiel
,
G. P.
,
Summers
,
E. K.
,
Zubair
,
S. M.
, and
Lienhard
,
J. H.
,
2011
, “
Entropy Generation Analysis of Desalination Technologies
,”
Entropy
,
13
(
10
), pp.
1829
1864
.10.3390/e13101829
14.
Kim
,
J.
, and
Hong
,
S.
,
2018
, “
Optimizing Seawater Reverse Osmosis With Internally Staged Design to Improve Product Water Quality and Energy Efficiency
,”
J. Membr. Sci.
,
568
, pp.
76
86
.10.1016/j.memsci.2018.09.046
15.
Medina-Flores
,
J. M.
, and
Picón-Núñez
,
M.
,
2010
, “
Modelling the Power Production of Single and Multiple Extraction Steam Turbines
,”
Chem. Eng. Sci.
,
65
(
9
), pp.
2811
2820
.10.1016/j.ces.2010.01.016
16.
Sun
,
L.
, and
Smith
,
R.
,
2015
, “
Performance Modeling of New and Existing Steam Turbines
,”
Ind. Eng. Chem. Res.
,
54
(
6
), pp.
1908
1915
.10.1021/ie5032309
17.
Varbanov
,
P. S.
,
Doyle
,
S.
, and
Smith
,
R.
,
2004
, “
Modelling and Optimization of Utility Systems
,”
Chem. Eng. Res. Des.
,
82
(
5
), pp.
561
578
.10.1205/026387604323142603
18.
Gvozdenac
,
D.
,
Urošević
,
B. G.
,
Menke
,
C.
,
Urošević
,
D.
, and
Bangviwat
,
A.
,
2017
, “
High Efficiency Cogeneration: CHP and non-CHP Energy
,”
Energy
,
135
, pp.
269
278
.10.1016/j.energy.2017.06.143
19.
Awan
,
A. B.
,
2019
, “
Performance Analysis and Optimization of a Hybrid Renewable Energy System for Sustainable NEOM City in Saudi Arabia
,”
J. Renewable Sustainable Energy
,
11
(
2
), p.
025905
.10.1063/1.5071449
20.
Apostoleris
,
H.
,
Sgouridis
,
S.
,
Stefancich
,
M.
, and
Chiesa
,
M.
,
2018
, “
Evaluating the Factors That Led to Low-Priced Solar Electricity Projects in the Middle East
,”
Nat. Energy
,
3
(
12
), pp.
1109
1114
.10.1038/s41560-018-0256-3
21.
Kim
,
J.
,
Park
,
K.
,
Yang
,
D. R.
, and
Hong
,
S.
,
2019
, “
A Comprehensive Review of Energy Consumption of Seawater Reverse Osmosis Desalination Plants
,”
Appl. Energy
,
254
(
15
), p.
113652
.10.1016/j.apenergy.2019.113652
22.
El-Dessouky
,
H. T.
, and
Ettouney
,
H. M.
,
2002
,
Fundamentals of Salt Water Desalination
,
Elsevier
,
Amsterdam, The Netherlands
.
23.
Tondeur
,
D.
, and
Kvaalen
,
E.
,
1987
, “
Equipartition of Entropy Production. An Optimality Criterion for Transfer and Separation Processes
,”
Ind. Eng. Chem. Res.
,
26
(
1
), pp.
50
56
.10.1021/ie00061a010
24.
Thiel
,
G. P.
,
McGovern
,
R. K.
,
Zubair
,
S. M.
, and
Lienhard
,
J. H.
,
2014
, “
Thermodynamic Equipartition for Increased Second Law Efficiency
,”
Appl. Energy
,
118
, pp.
292
299
.10.1016/j.apenergy.2013.12.033
25.
Nummedal
,
L.
, and
Kjelstrup
,
S.
,
2001
, “
Equipartition of Forces as a Lower Bound on the Entropy Production in Heat Exchange
,”
Int. J. Heat Mass Transfer
,
44
(
15
), pp.
2827
2833
.10.1016/S0017-9310(00)00321-5
26.
Kjelstrup
,
S.
,
Bedeaux
,
D.
,
Johannessen
,
E.
, and
Gross
,
J.
,
2017
,
Non-Equilibrium Thermodynamics for Engineers
, 2nd ed.,
World Scientific Publishing
,
Singapore
.
27.
Lienhard
,
J. H.
,
Mistry
,
K. H.
,
Sharqawy
,
M. H.
, and
Thiel
,
G. P.
,
2017
, “
Thermodynamics, Exergy, and Energy Efficiency in Desalination Systems
,”
Desalination Sustainability: A Technical, Socioeconomic, and Environmental Approach
, in
H. A.
Arafat
, ed.,
Elsevier Publishing
,
Amsterdam, The Netherlands
, pp.
127
206
.
28.
Wei
,
Q. J.
,
Tucker
,
C. I.
,
Wu
,
P. J.
,
Trueworthy
,
A. M.
,
Tow
,
E. W.
, and
Lienhard
,
J. H.
,
2020
, “
Impact of Salt Retention on True Batch Reverse Osmosis Energy Consumption: Experiments and Model Validation
,”
Desalination
,
479
, p.
114177
.10.1016/j.desal.2019.114177
29.
Warsinger
,
D. M.
,
Tow
,
E. W.
,
Nayar
,
K. G.
,
Maswadeh
,
L. A.
, and
Lienhard
,
J. H.
,
2016
, “
Energy Efficiency of Batch and Semi-Batch (CCRO) Reverse Osmosis Desalination
,”
Water Res.
,
106
, pp.
272
282
.10.1016/j.watres.2016.09.029
30.
Fritzmann
,
C.
,
Löwenberg
,
J.
,
Wintgens
,
T.
, and
Melin
,
T.
,
2007
, “
State-of-the-Art of Reverse Osmosis Desalination
,”
Desalination
,
216
(
1–3
), pp.
1
76
.10.1016/j.desal.2006.12.009
31.
Thiel
,
G. P.
, and
Lienhard
,
J. H.
,
2016
, “
An Effectiveness-Number of Transfer Units Relationship for Evaporators With Non-Negligible Boiling Point Elevation Increases
,”
ASME J. Heat Transfer
,
138
(
12
), p.
121801
.10.1115/1.4034055
32.
Mistry
,
K. H.
,
Antar
,
M. A.
, and
Lienhard
,
J. H.
,
2013
, “
An Improved Model for Multiple Effect Distillation
,”
Desalin. Water Treat.
,
51
(
4–6
), pp.
807
821
.10.1080/19443994.2012.703383
33.
Sharqawy
,
M. H.
,
Lienhard
,
J. H.
, and
Zubair
,
S. M.
,
2010
, “
Thermophysical Properties of Seawater: A Review of Existing Correlations and Data
,”
Desalin. Water Treat.
,
16
(
1–3
), pp.
354
380
.10.5004/dwt.2010.1079
34.
Nayar
,
K. G.
,
Sharqawy
,
M. H.
,
Banchik
,
L. D.
, and
Lienhard
,
J. H.
,
2016
, “
Thermophysical Properties of Seawater: A Review and New Correlations That Include Pressure Dependence
,”
Desalination
,
390
, pp.
1
24
.10.1016/j.desal.2016.02.024
You do not currently have access to this content.