Abstract

The performance of a falling-film heat exchanger is strongly linked to the surface characteristics and the heat transfer processes that take place over the tubes. The primary aim of this numerical study is to characterize the influence of surface wettability on the film flow behavior and its associated surface heat transfer in the jet-flow mode. Volume of fluid (VOF) based simulations are carried out for horizontal tubes with different surface wettabilities. The wettability of the tube surfaces is represented using the Kistler's dynamic contact angle model. Surface wettability effects ranging from superhydrophilic to superhydrophobic are studied by varying the equilibrium contact angle from 2 deg to 175 deg. Two different liquid mass flow rates of 0.06 and 0.18 kg/m-s corresponding to the inline and staggered jet flow modes are studied. Results are presented in terms of the liquid film thickness, the contact areas between the different phases (solid–liquid and liquid–air), and the heat transfer coefficient or Nusselt number. The resistance imposed by the increasing contact angles inhibits the extent of the liquid spreading over the tube surface, and this, in turn, influences the liquid film thickness, and the wetted area of the tube surface. A significant decrement in the heat transfer rate from the tube surfaces was observed as the equilibrium contact angle increased from 2 deg to 175 deg. The local distributions of the Nusselt number over the tube surface are strongly influenced by the flow recirculation in the liquid bulk.

References

1.
Hu
,
X.
, and
Jacobi
,
A. M.
,
1996
, “
The Intertube Falling Film: Part 1—Flow Characteristics, Mode Transitions, and Hysteresis
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
616
625
.10.1115/1.2822676
2.
Roques
,
J. F.
,
Dupont
,
V.
, and
Thome
,
J. R.
,
2002
, “
Falling Film Transitions on Plain and Enhanced Tubes
,”
ASME J. Heat Transfer
,
124
(
3
), pp.
491
499
.10.1115/1.1458017
3.
Mitrovic
,
J.
,
2005
, “
Flow Structures of a Liquid Film Falling on Horizontal Tubes
,”
Chem. Eng. Technol.
,
28
(
6
), pp.
684
694
.10.1002/ceat.200500064
4.
Mohamed
,
A. M. I.
,
2007
, “
Flow Behavior of Liquid Falling Film on a Horizontal Rotating Tube
,”
Exp. Therm. Fluid Sci.
,
31
(
4
), pp.
325
332
.10.1016/j.expthermflusci.2006.05.004
5.
Fujita
,
T.
, and
Ueda
,
T.
,
1978
, “
Heat Transfer to Falling Liquid Films and Film Breakdown—I
,”
Int. J. Heat Mass Transfer
,
21
(
2
), pp.
97
108
.10.1016/0017-9310(78)90212-0
6.
Conti
,
R. J.
,
1978
, “
Experimental Investigation of Horizontal Tube Ammonia Film Evaporators With Small Temperature Differentials
,”
Proceedings of the Fifth Ocean Thermal Energy Conversion Conference
,
A.
Lavi
, and
T. N.
Veziroglu
, eds.,
Miami
,
FL
, Feb. 20–22, pp.
161
180
.
7.
Ganic
,
E. N.
, and
Roppo
,
M. N.
,
1980
, “
An Experimental Study of Falling Liquid Film Breakdown on a Horizontal Cylinder During Heat Transfer
,”
ASME J. Heat Transfer
,
102
(
2
), pp.
342
346
.10.1115/1.3244285
8.
Lee
,
S.
,
Köroğlu
,
B.
, and
Park
,
C.
,
2012
, “
Experimental Investigation of Capillary-Assisted Solution Wetting and Heat Transfer Using a Micro-Scale, Porous-Layer Coating on Horizontal-Tube, Falling-Film Heat Exchanger
,”
Int. J. Refrig.
,
35
(
4
), pp.
1176
1187
.10.1016/j.ijrefrig.2011.11.015
9.
Köroğlu
,
B.
,
Lee
,
K. S.
, and
Park
,
C.
,
2013
, “
Nano/Micro-Scale Surface Modifications Using Copper Oxidation for Enhancement of Surface Wetting and Falling-Film Heat Transfer
,”
Int. J. Heat Mass Transfer
,
62
(
1
), pp.
794
804
.10.1016/j.ijheatmasstransfer.2013.03.040
10.
Köroğlu
,
B.
,
Bogan
,
N.
, and
Park
,
C.
,
2013
, “
Effects of Tube Row on Heat Transfer and Surface Wetting of Microscale Porous-Layer Coated, Horizontal-Tube, Falling-Film Evaporator
,”
ASME J. Heat Transfer
,
135
(
4
), p.
041802
.10.1115/1.4023014
11.
Zheng
,
Y.
,
Ma
,
X.
,
Li
,
Y.
,
Jiang
,
R.
,
Wang
,
K.
,
Lan
,
Z.
, and
Liang
,
Q.
,
2017
, “
Experimental Study of Falling Film Evaporation Heat Transfer on Superhydrophilic Horizontal-Tubes at Low Spray Density
,”
Appl. Therm. Eng.
,
111
, pp.
1548
1556
.10.1016/j.applthermaleng.2016.07.177
12.
Harikrishnan
,
L.
,
Maiya
,
M. P.
, and
Tiwari
,
S.
,
2011
, “
Investigations on Heat and Mass Transfer Characteristics of Falling Film Horizontal Tubular Absorber
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2609
2617
.10.1016/j.ijheatmasstransfer.2011.01.024
13.
Jafar
,
F.
,
Thorpe
,
G.
, and
Turan
,
O. F.
,
2007
, “
Liquid Film Falling on Horizontal Circular Cylinders
,”
Proceedings of 16th Australasian Fluid Mechanics Conference
,
P.
Jacobs
, ed.,
Gold Coast
, QLD, Dec. 3–7, pp.
1193
1200
.
14.
Sun
,
F.
,
Xu
,
S.
, and
Gao
,
Y.
,
2012
, “
Numerical Simulation of Liquid Falling Film on Horizontal Circular Tubes
,”
Front. Chem. Sci. Eng.
,
6
(
3
), pp.
322
328
.10.1007/s11705-012-1296-z
15.
Subramaniam
,
V.
, and
Garimella
,
S.
,
2009
, “
From Measurements of Hydrodynamics to Computation of Species Transport in Falling Films
,”
Int. J. Refrig.
,
32
(
4
), pp.
607
626
.10.1016/j.ijrefrig.2009.02.008
16.
Qiu
,
Q.
,
Meng
,
C.
,
Quan
,
S.
, and
Wang
,
W.
,
2017
, “
3-D Simulation of Flow Behaviour and Film Distribution Outside a Horizontal Tube
,”
Int. J. Heat Mass Transfer
,
107
, pp.
1028
1034
.10.1016/j.ijheatmasstransfer.2016.11.009
17.
Qiu
,
Q.
,
Zhu
,
X.
,
Mu
,
L.
, and
Shen
,
S.
,
2015
, “
Numerical Study of Falling Film Thickness Over Fully Wetted Horizontal Round Tube
,”
Int. J. Heat Mass Transfer
,
84
, pp.
893
897
.10.1016/j.ijheatmasstransfer.2015.01.024
18.
Li
,
M.
,
Lu
,
Y.
,
Zhang
,
S.
, and
Xiao
,
Y.
,
2016
, “
A Numerical Study of Effects of Counter-Current Gas Flow Rate on Local Hydrodynamic Characteristics of Falling Films Over Horizontal Tubes
,”
Desalination
,
383
, pp.
68
80
.10.1016/j.desal.2016.01.016
19.
Killion
,
J. D.
, and
Garimella
,
S.
,
2004
, “
Simulation of Pendant Droplets and Falling Films in Horizontal Tube Absorbers
,”
ASME J. Heat Transfer
,
126
(
6
), pp.
1003
1013
.10.1115/1.1833364
20.
Ribatski
,
G.
, and
Jacobi
,
A. M.
,
2005
, “
Falling-Film Evaporation on Horizontal Tubes—A Critical Review
,”
Int. J. Refrig.
,
28
(
5
), pp.
635
653
.10.1016/j.ijrefrig.2004.12.002
21.
Ribatski
,
G.
, and
Thome
,
J. R.
,
2007
, “
Two-Phase Flow and Heat Transfer Across Horizontal Tube Bundles‐a Review
,”
Heat Transfer Eng.
,
28
(
6
), pp.
508
524
.10.1080/01457630701193898
22.
Chyu
,
M.-C.
, and
Bergles
,
A. E.
,
1987
, “
An Analytical and Experimental Study of Falling-Film Evaporation on a Horizontal Tube
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
983
990
.10.1115/1.3248214
23.
Fujita
,
Y.
, and
Tsutsui
,
M.
,
1998
, “
Experimental Investigation of Falling Film Evaporation on Horizontal Tubes
,”
Heat Transfer Jpn. Res.
,
27
(
8
), pp.
609
618
.10.1002/(SICI)1520-6556(1998)27:8<609::AID-HTJ5>3.0.CO;2-N
24.
Fujita
,
Y.
, and
Tsutsui
,
M.
,
1995
, “
Evaporation Heat Transfer of Falling Films on Horizontal Tube. Part 2: Experimental Study
,”
Heat Transfer Res.
,
24
, pp.
17
31
.
25.
Liu
,
P. J. P.
,
1975
, “
The Evaporating Falling Film on Horizontal Tubes
,” Ph.D thesis,
University of Wisconsin
,
Madison, WI
.
26.
Sabin
,
S. M.
, and
Poppendiek
,
H. F.
,
1978
, “
Film Evaporation of Ammonia Over Horizontal Round Tubes
,”
Proceedings of the Fifth Ocean Thermal Energy Conversion Conference
,
A.
Lavi
, and
T. N.
Veziroglu
, eds.,
Miami, FL
, Feb. 20–22, pp.
237
260
.
27.
Chyu
,
M.-C.
,
Bergles
,
A. E.
, and
Mayinger
,
F.
,
1982
, “
Enhancement of Horizontal Tube Spray Film Evaporators
,”
Proceedings of the Seventh International Heat Transfer Conference
,
Begell House, Munich
, Sept. 6–10, pp.
275
280
.
28.
Zeng
,
X.
,
Chyu
,
M.-C.
, and
Ayub
,
D. Z. H.
,
2000
, “
Evaporation Heat Transfer Performance of Nozzle-Sprayed Ammonia on a Horizontal Tube
,”
Proceedings of the International Thermal Science Seminar
,
Begell House, Bled
, June 11–14, pp.
317
324
.
29.
Hu
,
X.
, and
Jacobi
,
A. M.
,
1996
, “
The Intertube Falling Film: Part 2—Mode Effects on Sensible Heat Transfer to a Falling Liquid Film
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
626
633
.10.1115/1.2822678
30.
Mitrovic
,
J.
,
1986
, “
Influence of Tube Spacing and Flow Rate on Heat Transfer From a Horizontal Tube to a Falling Liquid Film
,”
Proceedings of the Eighth International Heat Transfer Conference
,
Begell House, San Francisco, CA
, Aug. 17–22, pp.
1949
1956
.
31.
Parken
,
W. H.
, and
Fletcher
,
L. S.
,
1982
, “
Heat Transfer in Thin Liquid Films Flowing Over Horizontal Tubes
,”
Proceedings of the Seventh International Heat Transfer Conference
,
Munich, Germany
, Sept. 6–10, pp.
415
420
.
32.
Roques
,
J.-F.
, and
Thome
,
J. R.
,
2007
, “
Falling Films on Arrays of Horizontal Tubes With R-134a, Part I: Boiling Heat Transfer Results for Four Types of Tubes
,”
Heat Transfer Eng.
,
28
(
5
), pp.
398
414
.10.1080/01457630601163629
33.
Roques
,
J.-F.
, and
Thome
,
J. R.
,
2007
, “
Falling Films on Arrays of Horizontal Tubes With R-134a, Part II: Flow Visualization, Onset of Dryout, and Heat Transfer Predictions
,”
Heat Transfer Eng.
,
28
(
5
), pp.
415
434
.10.1080/01457630601163736
34.
Mohamed
,
A. M. I.
,
2010
, “
Experimental Study of Heat Transfer and Flow Characteristics of Liquid Falling Film on a Horizontal Fluted Tube
,”
Heat Mass Transfer
,
46
(
8–9
), pp.
841
849
.10.1007/s00231-010-0643-1
35.
Chien
,
L.-H.
, and
Tsai
,
Y.-L.
,
2011
, “
An Experimental Study of Pool Boiling and Falling Film Vaporization on Horizontal Tubes in R-245fa
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
4044
4054
.10.1016/j.applthermaleng.2011.08.007
36.
Li
,
W.
,
Wu
,
X.-Y.
,
Luo
,
Z.
, and
Webb
,
R. L.
,
2011
, “
Falling Water Film Evaporation on Newly-Designed Enhanced Tube Bundles
,”
Int. J. Heat Mass Transfer
,
54
(
13–14
), pp.
2990
2997
.10.1016/j.ijheatmasstransfer.2011.02.052
37.
Habert
,
M.
, and
Thome
,
J. R.
,
2010
, “
Falling-Film Evaporation on Tube Bundle With Plain and Enhanced Tubes—Part II: New Prediction Methods
,”
Exp. Heat Transfer
,
23
(
4
), pp.
281
297
.10.1080/08916152.2010.502046
38.
Habert
,
M.
, and
Thome
,
J. R.
,
2010
, “
Falling-Film Evaporation on Tube Bundle With Plain and Enhanced Tubes—Part I: Experimental Results
,”
Exp. Heat Transfer
,
23
(
4
), pp.
259
280
.10.1080/08916152.2010.502045
39.
Christians
,
M.
, and
Thome
,
J. R.
,
2012
, “
Falling Film Evaporation on Enhanced Tubes, Part 1: Experimental Results for Pool Boiling, Onset-of-Dryout and Falling Film Evaporation
,”
Int. J. Refrig.
,
35
(
2
), pp.
300
312
.10.1016/j.ijrefrig.2011.10.020
40.
Subramaniam
,
V.
, and
Garimella
,
S.
,
2014
, “
Numerical Study of Heat and Mass Transfer in Lithium Bromide-Water Falling Films and Droplets
,”
Int. J. Refrig.
,
40
, pp.
211
226
.10.1016/j.ijrefrig.2013.07.025
41.
Yang
,
L.
, and
Wang
,
W.
,
2011
, “
The Heat Transfer Performance of Horizontal Tube Bundles in Large Falling Film Evaporators
,”
Int. J. Refrig.
,
34
(
1
), pp.
303
316
.10.1016/j.ijrefrig.2010.07.011
42.
Jafar
,
F. A.
,
Thorpe
,
G. R.
, and
Turan
,
Ö. F.
,
2014
, “
Liquid Film Falling on Horizontal Plain Cylinders: Numerical Study of Heat Transfer in Unsaturated Porous Media
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
15
(
2
), pp.
101
109
.10.1080/15502287.2013.874056
43.
Karmakar
,
A.
, and
Acharya
,
S.
,
2017
, “
Heat Transfer Characteristics of Falling Film Over Horizontal Tubes- A Numerical Study
,”
AIAA Paper No. 2017-0901
.10.2514/6.2017-0901
44.
Killion
,
J. D.
, and
Garimella
,
S.
,
2001
, “
A Critical Review of Models of Coupled Heat and Mass Transfer in Falling-Film Absorption
,”
Int. J. Refrig.
,
24
(
8
), pp.
755
797
.10.1016/S0140-7007(00)00086-4
45.
Ben Hafsia
,
N.
,
Chaouachi
,
B.
, and
Gabsi
,
S.
,
2015
, “
A Study of the Coupled Heat and Mass Transfer During Absorption Process in a Spiral Tubular Absorber
,”
Appl. Therm. Eng.
,
76
, pp.
37
46
.10.1016/j.applthermaleng.2014.10.079
46.
Jeong
,
S.
, and
Garimella
,
S.
,
2002
, “
Falling-Film and Droplet Mode Heat and Mass Transfer in a Horizontal Tube LiBr/Water Absorber
,”
Int. J. Heat Mass Transfer
,
45
(
7
), pp.
1445
1458
.10.1016/S0017-9310(01)00262-9
47.
Papaefthimiou
,
V. D.
,
Koronaki
,
I. P.
,
Karampinos
,
D. C.
, and
Rogdakis
,
E. D.
,
2012
, “
A Novel Approach for Modelling LiBr–H2O Falling Film Absorption on Cooled Horizontal Bundle of Tubes
,”
Int. J. Refrig.
,
35
(
4
), pp.
1115
1122
.10.1016/j.ijrefrig.2012.01.015
48.
Sultana
,
P.
,
Wijeysundera
,
N. E.
,
Ho
,
J. C.
, and
Yap
,
C.
,
2007
, “
Modeling of Horizontal Tube-Bundle Absorbers of Absorption Cooling Systems
,”
Int. J. Refrig.
,
30
(
4
), pp.
709
723
.10.1016/j.ijrefrig.2006.09.010
49.
Dong
,
C.
,
Lu
,
L.
, and
Qi
,
R.
,
2017
, “
Model Development of Heat/Mass Transfer for Internally Cooled Dehumidifier Concerning Liquid Film Shrinkage Shape and Contact Angles
,”
Build. Environ.
,
114
, pp.
11
22
.10.1016/j.buildenv.2016.12.001
50.
Lan
,
H.
,
Wegener
,
J. L.
,
Armaly
,
B. F.
, and
Drallmeier
,
J. A.
,
2010
, “
Developing Laminar Gravity-Driven Thin Liquid Film Flow Down an Inclined Plane
,”
ASME J. Fluids Eng.
,
132
(
8
), p.
081301
.10.1115/1.4002109
51.
Qi
,
C. H.
,
Feng
,
H. J.
,
Lv
,
H. Q.
, and
Miao
,
C.
,
2016
, “
Numerical and Experimental Research on the Heat Transfer of Seawater Desalination With Liquid Film Outside Elliptical Tube
,”
Int. J. Heat Mass Transfer
,
93
, pp.
207
216
.10.1016/j.ijheatmasstransfer.2015.09.043
52.
Ji
,
G.
,
Wu
,
J.
,
Chen
,
Y.
, and
Ji
,
G.
,
2017
, “
Asymmetric Distribution of Falling Film Solution Flowing on Hydrophilic Horizontal Round Tube
,”
Int. J. Refrig.
,
78
, pp.
83
92
.10.1016/j.ijrefrig.2017.03.022
53.
Ding
,
H.
,
Xie
,
P.
,
Ingham
,
D.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2018
, “
Flow Behaviour of Drop and Jet Modes of a Laminar Falling Film on Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
124
, pp.
929
942
.10.1016/j.ijheatmasstransfer.2018.03.111
54.
Fernandez de Arroiabe
,
P.
,
Martinez-Urrutia
,
A.
,
Peña
,
X.
,
Martinez-Agirre
,
M.
, and
Bou-Ali
,
M. M.
,
2018
, “
Influence of the Contact Angle on the Wettability of Horizontal-Tube Falling Films in the Droplet and Jet Flow Modes
,”
Int. J. Refrig.
,
90
, pp.
12
21
.10.1016/j.ijrefrig.2018.04.003
55.
OpenFOAM
,
2015
, “
The OpenFOAM Foundation
, OpenFOAM 2.4.0,” OpenFOAM, accessed Aug. 15, 2016, https://www.openfoam.com/
56.
Brackbill
,
J.
,
Kothe
,
D.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
57.
Deshpande
,
S. S.
,
Anumolu
,
L.
, and
Trujillo
,
M. F.
,
2012
, “
Evaluating the Performance of the Two-Phase Flow Solver InterFoam
,”
Comput. Sci. Discov.
,
5
(
1
), p.
014016
.10.1088/1749-4699/5/1/014016
58.
Pilliod
,
J. E.
, and
Puckett
,
E. G.
,
2004
, “
Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces
,”
J. Comput. Phys.
,
199
(
2
), pp.
465
502
.10.1016/j.jcp.2003.12.023
59.
Puckett
,
E. G.
,
Almgren
,
A. S.
,
Bell
,
J. B.
,
Marcus
,
D. L.
, and
Rider
,
W. J.
,
1997
, “
A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows
,”
J. Comput. Phys.
,
130
(
2
), pp.
269
282
.10.1006/jcph.1996.5590
60.
Sussman
,
M.
, and
Puckett
,
E. G.
,
2000
, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
162
(
2
), pp.
301
337
.10.1006/jcph.2000.6537
61.
Renardy
,
Y.
, and
Renardy
,
M.
,
2002
, “
PROST: A Parabolic Reconstruction of Surface Tension for the Volume-of-Fluid Method
,”
J. Comput. Phys.
,
183
(
2
), pp.
400
421
.10.1006/jcph.2002.7190
62.
Li
,
J.
,
Renardy
,
Y. Y.
, and
Renardy
,
M.
,
2000
, “
Numerical Simulation of Breakup of a Viscous Drop in Simple Shear Flow Through a Volume-of-Fluid Method
,”
Phys. Fluids
,
12
(
2
), pp.
269
282
.10.1063/1.870305
63.
Gerlach
,
D.
,
Tomar
,
G.
,
Biswas
,
G.
, and
Durst
,
F.
,
2006
, “
Comparison of Volume-of-Fluid Methods for Surface Tension-Dominant Two-Phase Flows
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
740
754
.10.1016/j.ijheatmasstransfer.2005.07.045
64.
Attarzadeh
,
R.
, and
Dolatabadi
,
A.
,
2017
, “
Coalescence-Induced Jumping of Micro-Droplets on Heterogeneous Superhydrophobic Surfaces
,”
Phys. Fluids
,
29
(
1
), p.
012104
10.1063/1.4973823
65.
Kistler
,
S. F.
,
1993
,
Hydrodynamics of Wetting
,
Wettability
,
J.
Berg
, ed.,
Marcel Dekker, New York
, p.
311
.
66.
Hoffman
,
R. L.
,
1975
, “
A Study of the Advancing Interface. I. Interface Shape in Liquid—Gas Systems
,”
J. Colloid Interface Sci.
,
50
(
2
), pp.
228
241
.10.1016/0021-9797(75)90225-8
67.
Welch
,
S. W. J.
, and
Wilson
,
J.
,
2000
, “
A Volume of Fluid Based Method for Fluid Flows With Phase Change
,”
J. Comput. Phys.
,
160
(
2
), pp.
662
682
.10.1006/jcph.2000.6481
68.
Balcázar
,
N.
,
Lehmkuhl
,
O.
,
Jofre
,
L.
,
Rigola
,
J.
, and
Oliva
,
A.
,
2016
, “
A Coupled Volume-of-Fluid/Level-Set Method for Simulation of Two-Phase Flows on Unstructured Meshes
,”
Comput. Fluids
,
124
, pp.
12
29
.10.1016/j.compfluid.2015.10.005
69.
Chen
,
X.
,
Shen
,
S.
,
Wang
,
Y.
,
Chen
,
J.
, and
Zhang
,
J.
,
2015
, “
Measurement on Falling Film Thickness Distribution Around Horizontal Tube With Laser-Induced Fluorescence Technology
,”
Int. J. Heat Mass Transfer
,
89
, pp.
707
713
.10.1016/j.ijheatmasstransfer.2015.05.016
70.
Nusselt
,
W.
,
1916
, “
Die Oberflachenkondensation Des Wasserdamphes
,”
Z. Ver. Dtsch. Ing.
,
60
(
27
), pp.
541
546
.
71.
Mertens
,
K.
,
Putkaradze
,
V.
, and
Vorobieff
,
P.
,
2005
, “
Morphology of a Stream Flowing Down an Inclined Plane. Part 1. Braiding
,”
J. Fluid Mech.
,
531
, pp.
49
58
.10.1017/S0022112005003873
72.
Kang
,
B. H.
,
Kim
,
K. H.
, and
Lee
,
D.-Y.
,
2007
, “
Fluid Flow and Heat Transfer on a Falling Liquid Film With Surfactant From a Heated Vertical Surface
,”
J. Mech. Sci. Technol.
,
21
(
11
), pp.
1807
1812
.10.1007/BF03177436
You do not currently have access to this content.