Abstract

Artificial ground freezing (AGF) has historically been used to stabilize underground structure. Numerical methods generally require high computational power to be applicable in practice. Therefore, it is of interest to develop accurate and reliable analytical frameworks for minimizing computational cost. This paper proposes a singular perturbation solution for a two-phase Stefan problem that describes outward solidification in AGF. Specifically, the singular perturbation method separates two distinct temporal scales to capture the subcooling and freezing stages in the ground. The ground was considered as a porous medium with volume-averaged thermophysical properties. Further, Stefan number was assumed to be small, and effects of a few site-dependent parameters were investigated. The analytical solution was verified by numerical results and found to have similar conclusions yet with much lesser computational cost.

Keywords: artificial ground freezing, Stefan-like problems, singular perturbation, porous media, outward solidification.

References

1.
Vitel
,
M.
,
Rouabhi
,
A.
,
Tijani
,
M.
, and
Guérin
,
F.
,
2016
, “
Thermo-Hydraulic Modeling of Artificial Ground Freezing: Application to an Underground Mine in Fractured Sandstone
,”
Comput. Geotechnics
,
75
, pp.
80
92
.10.1016/j.compgeo.2016.01.024
2.
Alzoubi
,
M. A.
,
Zueter
,
A.
,
Nie-Rouquette
,
A.
, and
Sasmito
,
A. P.
,
2019
, “
Freezing on Demand: A New Concept for Mine Safety and Energy Savings in Wet Underground Mines
,”
Int. J. Min. Sci. Technol.
,
29
(
4
), pp.
621
627
.10.1016/j.ijmst.2019.06.015
3.
Pimentel
,
E.
,
Sres
,
A.
, and
Anagnostou
,
G.
,
2012
, “
Large-Scale Laboratory Tests on Artificial Ground Freezing Under Seepage-Flow Conditions
,”
Geotechnique
,
62
(
3
), pp.
227
241
.10.1680/geot.9.P.120
4.
Alzoubi
,
M. A.
,
Nie-Rouquette
,
A.
, and
Sasmito
,
A. P.
,
2018
, “
Conjugate Heat Transfer in Artificial Ground Freezing Using Enthalpy-Porosity Method: Experiments and Model Validation
,”
Int. J. Heat Mass Transfer
,
126
, pp.
740
752
.10.1016/j.ijheatmasstransfer.2018.05.059
5.
Alzoubi
,
M. A.
,
Madiseh
,
A.
,
Hassani
,
F. P.
, and
Sasmito
,
A. P.
,
2019
, “
Heat Transfer Analysis in Artificial Ground Freezing Under High Seepage: Validation and Heatlines Visualization
,”
Int. J. Therm. Sci.
,
139
, pp.
232
245
.10.1016/j.ijthermalsci.2019.02.005
6.
Alzoubi
,
M. A.
,
Nie-Rouquette
,
A.
,
Ghoreishi-Madiseh
,
S. A.
,
Hassani
,
F. P.
, and
Sasmito
,
A. P.
,
2019
, “
On the Concept of the Freezing-on-Demand (FOD) in Artificial Ground Freezing for Long-Term Applications
,”
Int. J. Heat Mass Transfer
,
143
, p.
118557
.10.1016/j.ijheatmasstransfer.2019.118557
7.
Tounsi
,
H.
,
Rouabhi
,
A.
,
Tijani
,
M.
, and
Guérin
,
F.
,
2019
, “
Thermo-Hydro-Mechanical Modeling of Artificial Ground Freezing: Application in Mining Engineering
,”
Rock Mech. Rock Eng.
,
52
(
10
), pp.
3889
3907
.10.1007/s00603-019-01786-9
8.
Zueter
,
A.
,
Nie-Rouquette
,
A.
,
Alzoubi
,
M. A.
, and
Sasmito
,
A. P.
,
2020
, “
Thermal and Hydraulic Analysis of Selective Artificial Ground Freezing Using Air Insulation: Experiment and Modeling
,”
Comput. Geotechnics
,
120
, p.
103416
.10.1016/j.compgeo.2019.103416
9.
Tounsi
,
H.
,
Rouabhi
,
A.
, and
Jahangir
,
E.
,
2020
, “
Thermo-Hydro-Mechanical Modeling of Artificial Ground Freezing Taking Into Account the Salinity of the Saturating Fluid
,”
Comput. Geotechnics
,
119
, p.
103382
.10.1016/j.compgeo.2019.103382
10.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Clarendon Press
,
Oxford, UK
.
11.
Alexiades
,
V.
,
1992
,
Mathematical Modeling of Melting and Freezing Processes
,
CRC Press
,
Washington, DC
.
12.
Hill
,
J. M.
,
1987
,
One-Dimensional Stefan Problems: An Introduction
, Vol.
31
,
Longman Sc & Tech
,
New York
.
13.
Prud'Homme
,
M.
,
Nguyen
,
T. H.
, and
Nguyen
,
D. L.
,
1989
, “
A Heat Transfer Analysis for Solidification of Slabs, Cylinders, and Spheres
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
699
705
.10.1115/1.3250739
14.
Goodman
,
T. R.
,
1958
, “
The Heat Balance Integral and Its Application to Problems Involving Change of Phase
,”
ASME J. Heat Transfer
,
80
(
2
), pp.
335
341
.https://www.scopus.com/record/display.uri?eid=2-s2.0-84964236688&origin=inward
15.
Wood
,
A. S.
,
2001
, “
A New Look at the Heat Balance Integral Method
,”
Appl. Math. Modell.
,
25
(
10
), pp.
815
824
.10.1016/S0307-904X(01)00016-6
16.
Caldwell
,
J.
, and
Kwan
,
Y.
,
2003
, “
On the Perturbation Method for the Stefan Problem With Time-Dependent Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
46
(
8
), pp.
1497
1501
.10.1016/S0017-9310(02)00415-5
17.
Ribera
,
H.
,
Myers
,
T. G.
, and
MacDevette
,
M. M.
,
2019
, “
Optimising the Heat Balance Integral Method in Spherical and Cylindrical Stefan Problems
,”
Appl. Math. Comput.
,
354
, pp.
216
231
.10.1016/j.amc.2019.02.039
18.
Smith
,
D. R.
,
1985
,
Singular-Perturbation Theory: An Introduction With Applications
,
Cambridge University Press
,
New York
.
19.
Weinbaum
,
S.
, and
Jiji
,
L.
,
1977
, “
Singular Perturbation Theory for Melting or Freezing in Finite Domains Initially Not at the Fusion Temperature
,”
ASME J. Appl. Mech.
,
44
(
1
), pp.
25
30
.10.1115/1.3424008
20.
Brosa Planella
,
F.
,
Please
,
C. P.
, and
Van Gorder
,
R. A.
,
2019
, “
Extended Stefan Problem for Solidification of Binary Alloys in a Finite Planar Domain
,”
SIAM J. Appl. Math.
,
79
(
3
), pp.
876
913
.10.1137/18M118699X
21.
McCue
,
S. W.
,
Wu
,
B.
, and
Hill
,
J. M.
,
2008
, “
Classical Two-Phase Stefan Problem for Spheres
,”
Proc. R. Soc. A
,
464
(
2096
), pp.
2055
2076
.10.1098/rspa.2007.0315
22.
Jiji
,
L. M.
, and
Weinbaum
,
S.
,
1978
, “
Perturbation Solutions for Melting or Freezing in Annular Regions Initially Not at the Fusion Temperature
,”
Int. J. Heat Mass Transfer
,
21
(
5
), pp.
581
592
.10.1016/0017-9310(78)90055-8
23.
Kucera
,
A.
, and
Hill
,
J. M.
,
1986
, “
On Inward Solidifying Cylinders and Spheres Initially Not at Their Fusion Temperature
,”
Int. J. Non-Linear Mech.
,
21
(
1
), pp.
73
82
.10.1016/0020-7462(86)90014-4
24.
Zhou
,
Y.
,
Shi
,
X.-Y.
, and
Zhou
,
G.-Q.
,
2018
, “
Exact Solution for a Two-Phase Stefan Problem With Power-Type Latent Heat
,”
J. Eng. Math.
,
110
(
1
), pp.
1
13
.10.1007/s10665-017-9921-y
25.
Bollati
,
J.
, and
Tarzia
,
D. A.
,
2018
, “
Exact Solution for a Two-Phase Stefan Problem With Variable Latent Heat and a Convective Boundary Condition at the Fixed Face
,”
Z. Angew. Math. Phys.
,
69
(
2
), p.
38
.10.1007/s00033-018-0923-z
26.
Voller
,
V. R.
,
Swenson
,
J. B.
, and
Paola
,
C.
,
2004
, “
An Analytical Solution for a Stefan Problem With Variable Latent Heat
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5387
5390
.10.1016/j.ijheatmasstransfer.2004.07.007
27.
Voller
,
V. R.
,
2010
, “
An Exact Solution of a Limit Case Stefan Problem Governed by a Fractional Diffusion Equation
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5622
5625
.10.1016/j.ijheatmasstransfer.2010.07.038
28.
Zhou
,
Y.
,
Wang
,
Y.-J.
, and
Bu
,
W.-K.
,
2014
, “
Exact Solution for a Stefan Problem With Latent Heat a Power Function of Position
,”
Int. J. Heat Mass Transfer
,
69
, pp.
451
454
.10.1016/j.ijheatmasstransfer.2013.10.043
29.
de Oliveira
,
D. S.
, and
Ribeiro
,
F. B.
,
2011
, “
Heat Conduction Equation Solution in the Presence of a Change of State in a Bounded Axisymmetric Cylindrical Domain
,”
ASME J. Heat Transfer
,
133
(
6
), p.
062301
.10.1115/1.4003542
30.
Shabgard
,
H.
,
Zhu
,
W.
, and
Faghri
,
A.
,
2019
, “
Integral Solution of Two-Region Solid–Liquid Phase Change in Annular Geometries and Application to Phase Change Materials–Air Heat Exchangers
,”
Energies
,
12
(
23
), p.
4474
.10.3390/en12234474
31.
Parhizi
,
M.
, and
Jain
,
A.
,
2019
, “
Solution of the Phase Change Stefan Problem With Time-Dependent Heat Flux Using Perturbation Method
,”
ASME J. Heat Transfer
,
141
(
2
), p.
024503
.10.1115/1.4041956
32.
Feltham
,
D. L.
, and
Garside
,
J.
,
2001
, “
Analytical and Numerical Solutions Describing the Inward Solidification of a Binary Melt
,”
Chem. Eng. Sci.
,
56
(
7
), pp.
2357
2370
.10.1016/S0009-2509(00)00440-1
33.
Parhizi
,
M.
, and
Jain
,
A.
,
2019
, “
Analytical Modeling and Optimization of Phase Change Thermal Management of a Li-Ion Battery Pack
,”
Appl. Therm. Eng.
,
148
, pp.
229
237
.10.1016/j.applthermaleng.2018.11.017
34.
Ye
,
M.
,
Hu
,
G.
,
Guo
,
F.
,
Huang
,
W.
,
Wang
,
Z.
,
Zhao
,
X.
, and
Li
,
Y.
,
2020
, “
A Novel Semi-Analytical Solution for Calculating the Temperature Distribution of the Lithium-Ion Batteries During Nail Penetration Based on Green's Function Method
,”
Appl. Therm. Eng.
,
174
, p.
115129
.10.1016/j.applthermaleng.2020.115129
35.
Edwards
,
D. A.
, and
Mackay
,
M. E.
,
2020
, “
Postextrusion Heating in Three-Dimensional Printing
,”
ASME J. Heat Transfer
,142(
5
), p.
052101
.10.1115/1.4046343
36.
Wu
,
B.
,
McCue
,
S. W.
,
Tillman
,
P.
, and
Hill
,
J. M.
,
2009
, “
Single Phase Limit for Melting Nanoparticles
,”
Appl. Math. Modell.
,
33
(
5
), pp.
2349
2367
.10.1016/j.apm.2008.07.009
37.
Fan
,
L.
, and
Khodadadi
,
J.
,
2012
, “
A Theoretical and Experimental Investigation of Unidirectional Freezing of Nanoparticle-Enhanced Phase Change Materials
,”
ASME J. Heat Transfer
,
134
(
9
), p.
092301
.10.1115/1.4006305
38.
Rubinsky
,
B.
, and
Shitzer
,
A.
,
1976
, “
Analysis of a Stefan-Like Problem in a Biological Tissue Around a Cryosurgical Probe
,”
ASME J. Heat Transfer
,
98
(
3
), pp.
514
519
.10.1115/1.3450587
39.
Shitzer
,
A.
,
2011
, “
Cryosurgery: Analysis and Experimentation of Cryoprobes in Phase Changing Media
,”
ASME J. Heat Transfer
,
133
(
1
), p.
011005
.10.1115/1.4002302
40.
Whitaker
,
S.
,
1986
, “
Flow in Porous Media—I: A Theoretical Derivation of Darcy's Law
,”
Transp. Porous Media
,
1
(
1
), pp.
3
25
.10.1007/BF01036523
41.
Kaviany
,
M.
,
2012
,
Principles of Heat Transfer in Porous Media
,
Springer Science & Business Media
,
New York
.
42.
Brosa Planella
,
F.
,
Please
,
C. P.
, and
Van Gorder
,
R. A.
,
2018
, “
Instability in the Self-Similar Motion of a Planar Solidification Front
,”
IMA J. Appl. Math.
,
83
(
1
), pp.
106
130
.10.1093/imamat/hxx037
43.
Brosa Planella
,
F.
,
Please
,
C. P.
, and
Van Gorder
,
R. A.
,
2020
, “
Extended Stefan Problem for the Solidification of Binary Alloys in a Sphere
,”
Eur. J. Appl. Math.
, pp.
1
38
.10.1017/S095679252000011X
44.
Faden
,
M.
,
König-Haagen
,
A.
, and
Brüggemann
,
D.
,
2019
, “
An Optimum Enthalpy Approach for Melting and Solidification With Volume Change
,”
Energies
,
12
(
5
), p.
868
.10.3390/en12050868
45.
Swaminathan
,
C.
, and
Voller
,
V. R.
,
1992
, “
A General Enthalpy Method for Modeling Solidification Processes
,”
Metall. Trans. B
,
23
(
5
), pp.
651
664
.10.1007/BF02649725
You do not currently have access to this content.