Abstract

The heat transfer coefficient of cylindrical holes fed by varying internal cross-flow channels with different cross-flow Reynolds numbers Rec is experimentally studied on a low-speed flat-plate facility. Three coolant cross flow cases, including a smooth case and two ribbed cases with 45/135-deg ribs, are studied at Rec = 50,000, and 100,000 with varying blowing ratios M of 0.5, 1.0, and 2.0. A transient liquid-crystal (LC) measurement technique is used to determine the heat transfer coefficient. At lower M, the heat transfer enhancement regions are asymmetrical for the smooth and 45-deg cases. The asymmetrical vortex is more pronounced with increasing cross-flow direction velocity, resulting in a more skewed distribution at Rec = 100,000. Conversely, the contours are laterally symmetric in the 135-deg case at varying Rec. A fork-shaped trend with a relatively high heat transfer coefficient appears upstream, and the increases in the heat transfer in the 135-deg cases are lower than those in the 45-deg cases. As M increases to 2.0, the vortex intensity increases, resulting in a stronger scouring effect upstream, especially at large Rec. The range and degree are affected by Rec at M = 2.0. The core of the heat transfer enhancement is skewed to the −Y side for both cases.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press, Taylor & Francis
, Boca Raton, FL.
2.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Effect of Internal Coolant Crossflow on the Effectiveness of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
125
(
3
), pp.
547
554
.10.1115/1.1580523
3.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2017
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part I: Axial Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011003
.10.1115/1.4037997
4.
McClintic
,
J. W.
,
Klavetter
,
S. R.
,
Winka
,
J. R.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2015
, “
The Effect of Internal Crossflow on the Adiabatic Effectiveness of Compound Angle Film Cooling Holes
,”
ASME J. Turbomach.
,
137
(
7
), p.
071006
.10.1115/1.4029157
5.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2017
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part II: Compound Angle Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011004
.10.1115/1.4037998
6.
Wilkes
,
E.
,
Anderson
,
J. B.
,
McClintic
,
J. W.
, and
Bogard
,
D. G.
,
2016
, “
An Investigation of Turbine Film Cooling Effectiveness With Shaped Holes and Internal Cross-Flow With Varying Operational Parameters
,”
ASME
Paper No. GT2016-56162.10.1115/GT2016-56162
7.
Klavetter
,
S. R.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2016
, “
The Effect of Rib Turbulators on Film Cooling Effectiveness of Round Compound Angle Holes Fed by an Internal Cross-Flow
,”
ASME J. Turbomach.
,
138
(
12
), p.
121006
.10.1115/1.4032928
8.
Peng
,
W.
,
Sun
,
X.
,
Jiang
,
P. X.
, and
Wang
,
J.
,
2017
, “
Effect of Ribbed and Smooth Coolant Cross-Flow Channel on Film Cooling
,”
Nucl. Eng. Des.
,
316
, pp.
186
197
.10.1016/j.nucengdes.2017.03.015
9.
Stratton
,
Z. T.
,
Shih
,
T. I.-P.
,
Laskowski
,
G. M.
,
Barr
,
B.
, and
Briggs
,
R.
,
2015
, “
Effects of Crossflow in an Internal-Cooling Channel on Film Cooling of a Flat Plate Through Compound-Angle Holes
,”
ASME
Paper No. GT2015-42771.10.1115/GT2015-42771
10.
Li
,
W. H.
,
Shi
,
W.
,
Li
,
X. Y.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2017
, “
On the Flow Structures and Adiabatic Film Effectiveness for Simple and Compound Angle Hole With Varied Length-to-Diameter Ratio by Large Eddy Simulation and Pressure-Sensitive Paint Techniques
,”
ASME J. Heat Transfer
,
139
(
12
), p.
122201
.10.1115/1.4037085
11.
Saumweber
,
C.
, and
Schulz
,
A.
,
2008
, “
Comparison the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes With Special Emphasis on the Effect of Internal Coolant Cross-Flow
,”
ASME
Paper No. GT2008-51036.10.1115/GT2008-51036
12.
Xie
,
G. N.
,
Liu
,
J.
,
Zhang
,
W. H.
,
Lorenzini
,
G.
, and
Biserni
,
C.
,
2013
, “
Numerical Prediction of Turbulent Flow and Heat Transfer Enhancement in a Square Passage With Various Truncated Ribs on One Wall
,”
ASME J. Heat Transfer
,
136
(
1
), p.
011902
.10.1115/1.4024989
13.
Moon
,
M. A.
,
Park
,
M. J.
, and
Kim
,
K. Y.
,
2014
, “
Evaluation of Heat Transfer Performances of Various Rib Shapes
,”
Int. J. Heat Mass Transfer
,
71
, pp.
275
284
.10.1016/j.ijheatmasstransfer.2013.12.026
14.
Marocco
,
L.
, and
Franco
,
A.
,
2017
, “
Direct Numerical Simulation and RANS Comparison of Turbulent Convective Heat Transfer in a Staggered Ribbed Channel With High Blockage
,”
ASME J. Heat Transfer
,
139
(
2
), p.
021701
.10.1115/1.4034774
15.
Yang
,
W. H.
,
Xue
,
S. L.
,
He
,
Y. H.
, and
Li
,
W.
,
2017
, “
Experimental Study on the Heat Transfer Characteristics of High Blockage Ribs Channel
,”
Exp. Therm. Fluid Sci.
,
83
, pp.
248
259
.10.1016/j.expthermflusci.2017.01.016
16.
Liu
,
J.
,
Hussain
,
S.
,
Wang
,
W.
,
Wang
,
L.
,
Xie
,
G. N.
, and
Sundén
,
B.
,
2019
, “
Heat Transfer Enhancement and Turbulent Flow in a Rectangular Channel Using Perforated Ribs With Inclined Holes
,”
ASME J. Heat Transfer
,
141
(
4
), p.
041702
.10.1115/1.4042841
17.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
,
1978
, “
An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces
,”
Int. J. Heat Mass Transfer
,
21
(
8
), pp.
1143
1156
.10.1016/0017-9310(78)90113-8
18.
Liou
,
T. M.
,
Chang
,
S. W.
,
Lan
,
Y. A.
,
Chan
,
S. P.
, and
Liu
,
Y. S.
,
2017
, “
Heat Transfer and Flow Characteristics of Two-Pass Parallelogram Channels With Attached and Detached Transverse Ribs
,”
ASME J. Heat Transfer
,
139
(
4
), p.
042001
.10.1115/1.4035279
19.
Azad
,
G. S.
,
Uddin
,
M. J.
,
Han
,
J. C.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2002
, “
Heat Transfer in a Two-Pass Rectangular Rotating Channel With 45-Deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
124
(
2
), pp.
251
259
.10.1115/1.1450569
20.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
,
Ou
,
S.
, and
Boyle
,
R. J.
,
1992
, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
2891
2903
.10.1016/0017-9310(92)90309-G
21.
Liu
,
C. L.
,
Ye
,
L.
,
Zhu
,
H. R.
, and
Luo
,
J. X.
,
2017
, “
Investigation on the Effects of Rib Orientation Angle on the Film Cooling With Ribbed Cross-Flow Coolant Channel
,”
Int. J. Heat Mass Transfer
,
115
(
B
), pp.
379
394
.10.1016/j.ijheatmasstransfer.2017.08.063
22.
Ye
,
L.
,
Liu
,
C. L.
,
Liu
,
H. Y.
,
Zhu
,
H. R.
, and
Luo
,
J. X.
,
2018
, “
Experimental and Numerical Study on the Effects of Rib Orientation Angle on Film Cooling Performance of Compound Angle Holes
,”
Int. J. Heat Mass Transfer
,
126
(
B
), pp.
1099
1112
.10.1016/j.ijheatmasstransfer.2018.06.064
23.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.10.1115/1.1860562
24.
Han
,
J. S.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer
,
140
(
11
), p.
113001
.10.1115/1.4039644
25.
Ye
,
L.
,
Liu
,
C. L.
,
Zhu
,
H. R.
, and
Luo
,
J. X.
,
2019
, “
Experimental Investigation on Effect of Cross-Flow Reynolds Number on Film Cooling Effectiveness
,”
AIAA J.
,
57
(
11
), pp.
4804
4814
.10.2514/1.J057943
26.
Liu
,
C. L.
,
Zhu
,
H. R.
,
Bai
,
J. T.
, and
Xu
,
D. C.
,
2009
, “
Experimental Research on the Thermal Performance of Converging Slot Holes With Different Divergence Angles
,”
Exp. Therm. Fluid Sci.
,
33
(
5
), pp.
808
817
.10.1016/j.expthermflusci.2009.02.010
27.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
.10.1088/0957-0233/11/7/312
28.
Liu
,
C. L.
,
Zhu
,
H. R.
,
Bai
,
J. T.
,
Zhang
,
Z. W.
, and
Zhang
,
X.
,
2011
, “
Investigation on the Influence of Nonuniform Initial Temperature on the Transient Heat Transfer Measurement of Film Cooling
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
1151
1161
.10.1016/j.expthermflusci.2011.01.021
29.
Wagner
,
G.
,
Schneider
,
E.
,
Wolfersdorf
,
J. V.
,
Ott
,
P.
, and
Weigand
,
B.
,
2007
, “
Method for Analysis of Showerhead Film Cooling Experiments on Highly Curved Surfaces
,”
Exp. Therm. Fluid Sci.
,
31
(
4
), pp.
381
389
.10.1016/j.expthermflusci.2006.05.006
30.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
You do not currently have access to this content.