Abstract

Effect of anodization on the thermal performance of naturally cooled heat sinks in power electronic devices made of die-cast aluminum alloy A380 and machined aluminum alloy 6061 was investigated experimentally and numerically. Various types of anodization were examined with different thickness of anodic aluminum oxide layer (AAO), pore size distributions, and surface coloring conditions. A customized natural convection and thermal radiation experimental chamber was built to measure the cooling capacity and heat sink temperatures. A 3D numerical model was also developed and validated against the collected data to provide more details into the contribution of the radiation heat transfer. The total emittance of the anodized samples was determined by a Fourier transform infrared reflectometer (FTIR) spectroscopy method. The results show a significant improvement in total hemispherical emissivity from 0.14 to 0.92 in anodized die-cast aluminum samples. This increase resulted in a considerable reduction in overall thermal resistance, up to 15%; where up to 41% of the total heat dissipation was contributed by thermal radiation. In spite of the rather distinguishable surface morphologies, the measurements suggested that thermal emissivity of the anodized die-cast Al A380 and Al alloy 6061 samples were in the same range.

References

1.
Anandan
,
S. S.
, and
Ramalingam
,
V.
,
2008
, “
Thermal Management of Electronics: A Review of Literature
,”
Therm. Sci.
12
, pp.
5
26
.10.2298/TSCI0802005A
2.
Shabany
,
Y.
,
2010
,
Heat Transfer: Thermal Management of Electronics
,
CRC Press
,
Boca Raton, FL
.
3.
Edwards
,
J.
, and
Chaddock
,
J.
,
1963
, “
An Experimental Investigation of the Radiation and Free Convection Heat Transfer From a Cylindrical Disk Extended Surface
,”
ASHRAE Trans.
,
69
(
1
), pp.
313
322
.
4.
Rammohan Rao
,
V.
, and
Venkateshan
,
S. P.
,
1996
, “
Experimental Study of Free Convection and Radiation in Horizontal Fin Arrays
,”
Int. J. Heat Mass Transfer
,
39
(
4
), pp.
779
789
.10.1016/0017-9310(95)00158-1
5.
Guglielmini
,
G.
,
Nannei
,
E.
, and
Tanda
,
G.
,
1987
, “
Natural Convection and Radiation Heat Transfer From Staggered Vertical Fins
,”
Int. J. Heat Mass Transfer
,
30
(
9
), pp.
1941
1948
.10.1016/0017-9310(87)90252-3
6.
Sparrow
,
E. M.
, and
Vemuri
,
S. B.
,
1985
, “
Natural Convection/Radiation Heat Transfer From Highly Populated Pin Fin Arrays
,”
ASME J. Heat Transfer
,
107
(
1
), pp.
190
197
.10.1115/1.3247377
7.
Rao
,
V. D.
,
Naidu
,
S. V.
,
Rao
,
B. G.
, and
Sharma
,
K. V.
,
2006
, “
Heat Transfer From a Horizontal Fin Array by Natural Convection and Radiation-A Conjugate Analysis
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3379
3391
.10.1016/j.ijheatmasstransfer.2006.03.010
8.
Yu
,
S. H.
,
Jang
,
D.
, and
Lee
,
K. S.
,
2012
, “
Effect of Radiation in a Radial Heat Sink Under Natural Convection
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
505
509
.10.1016/j.ijheatmasstransfer.2011.09.026
9.
Tamayol
,
A.
,
McGregor
,
F.
,
Demian
,
E.
,
Trandafir
,
E.
,
Bowler
,
P.
,
Rada
,
P.
, and
Bahrami
,
M.
,
2011
, “
Assessment of Thermal Performance of Electronic Enclosures With Rectangular Fins: A Passive Thermal Solution
,”
ASME
Paper No. IPACK2011-52174.10.1115/IPACK2011-52174
10.
Aihara
,
T.
,
Maruyama
,
S.
, and
Kobayakawa
,
S.
,
1990
, “
Free Convective/Radiative Heat Transfer From Pin-Fin Arrays With a Vertical Base Plate (General Representation of Heat Transfer Performance)
,”
Int. J. Heat Mass Transfer
,
33
(
6
), pp.
1223
1232
.10.1016/0017-9310(90)90253-Q
11.
Lee
,
W.
, and
Park
,
S.
,
2014
, “
Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures
,”
Chem. Rev.
,
114
(
15
), pp.
7487
7556
.10.1021/cr500002z
12.
Sheasby
,
P. G.
,
Pinner
,
R.
, and
Wernick
,
S.
,
2001
,
The Surface Treatment and Finishing of Aluminium and Its Alloys
,
ASM International
,
Novelty, OH
.
13.
Goeminne
,
G.
,
Terryn
,
H.
, and
Vereecken
,
J.
,
1995
, “
Characterisation of Conversion Layers on Aluminium by Means of Electrochemical Impedance Spectroscopy
,”
Electrochim. Acta
,
40
(
4
), pp.
479
486
.10.1016/0013-4686(94)00312-O
14.
Bouchama
,
L.
,
Azzouz
,
N.
,
Boukmouche
,
N.
,
Chopart
,
J. P.
,
Daltin
,
A. L.
, and
Bouznit
,
Y.
,
2013
, “
Enhancing Aluminum Corrosion Resistance by Two-Step Anodizing Process
,”
Surf. Coat. Technol.
,
235
, pp.
676
684
.10.1016/j.surfcoat.2013.08.046
15.
Harkness
,
A. C.
, and
Young
,
L.
,
1966
, “
High Resistance Anodic Oxide Films on Aluminium
,”
Can. J. Chem.
,
44
(
20
), pp.
2409
2413
.10.1139/v66-363
16.
Army Research Laboratory,
2003
, “
Anodic Coating for Aluminum and Aluminum Alloys (MIL-A-8625F)
,” accessed Feb. 18, 2020, https://quicksearch.dla.mil/qsDocDetails.aspx?ident_number=7074
17.
Bevans
,
J. T.
,
Miller
,
W. D.
,
Brown
,
G. L.
,
Nelson
,
K. E.
,
Luedke
,
E. E.
, and
Russell
,
D. A.
,
1962
, “
An Investigation of the Thermal Radiation Properties of Certain Spacecraft Materials
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-CR-74772, STL-8633-6014-SU-000
.https://ntrs.nasa.gov/search.jsp?R=19660015649
18.
Lowery
,
J. R.
, and
Marshall
,
G. C.
,
1977
, “
Solar Absorption Characteristics of Several Coatings and Surface Finishes
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-TM-X-3509, M-218
.https://ntrs.nasa.gov/search.jsp?R=19770013623
19.
Hemmer
,
J. H.
,
1984
, “
Solar Absorptance and Thermal Emittance of Some Common Spacecraft Thermal-Control Coatings
,” National Aeronautics and Space Administration, Washington, DC,
Report No.
NASA-RP-1121, REPT-84F0248, NAS 1.61:1121
.https://ntrs.nasa.gov/search.jsp?R=19840015630
20.
Golden
,
J. L.
,
1993
, “
Anodized Aluminum on LDEF
,”
LDEF Materials Results for Spacecraft Applications
,
National Aeronautics and Space Administration
, Washington, DC, Report, pp. 
61
71
.https://ntrs.nasa.gov/search.jsp?R=19940026512link to Report
21.
Tribble
,
A. C.
,
Lukins
,
R.
,
Watts
,
E.
,
Naumov
,
S. F.
, and
Sergeev
,
V. K.
,
1995
, “
Low Earth Orbit Thermal Control Coatings Exposure Flight Tests: A Comparison of U.S. and Russian Results
,” National Aeronautics and Space Administration, Washington, DC,
Report No.
NASA-CR-4647, NAS 1.26:4647
.https://ntrs.nasa.gov/search.jsp?R=19950016502
22.
Siva Kumar
,
C.
,
Sharma
,
A. K.
,
Mahendra
,
K. N.
, and
Mayanna
,
S. M.
,
2000
, “
Studies on Anodic Oxide Coating With Low Absorptance and High Emittance on Aluminum Alloy 2024
,”
Sol. Energy Mater. Sol. Cells
,
60
(
1
), pp.
51
57
.10.1016/S0927-0248(99)00062-8
23.
Lee
,
J.
,
Kim
,
D.
,
Choi
,
C.
, and
Chung
,
W.
,
2017
, “
Nano Energy Nanoporous Anodic Alumina Oxide Layer and Its Sealing for the Enhancement of Radiative Heat Dissipation of Aluminum Alloy
,”
Nano Energy
,
31
, pp.
504
513
.10.1016/j.nanoen.2016.12.007
24.
Klampfl
,
B. F.
,
1998
, “
A Parametric Study of Sulfuric Acid Anodized 5657 Aluminum Alloy Coatings for Thermal Control Applications
,” Master's thesis, Rice University, Houston, TX.
25.
SPECTRAL, 2019, “
The Process of Anodizing, Spectral Finishing
,” Spectral Finishing Inc., Surrey, BC, accessed, Jun. 20,
2019
, https://spectralfinishing.ca/home/the-process-of-anodizing/
26.
ASTM-408-71(1996)e1
,
1971
, “
Standard Test Methods for Total Normal Emittance of Surfaces Using Inspection-Meter
,”
Annu. B. ASTM Stand.
,
71
, pp.
2
4
.
27.
Jaworske
,
D. A.
,
2003
, “
Portable Infrared Reflectometer for Evaluating Emittance
,”
AIP Conf. Proc.
,
504
, pp.
791
796
.10.1063/1.1307301
28.
ANSYS
,
2016
, “
Ansys Fluent Help Version 17.2
,” ANSYS Corp., Canonsburg, PA.
29.
Çengel
,
Y. A.
,
2008
,
Introduction to Thermodynamics and Heat Transfer
,
High Education, McGraw-Hill
,
New York
.
30.
Zhang
,
Z.
,
2019
, “
Passive Cooling System: An Integrated Solution to the Applications in Power Electronics
,” Master's Thesis, Simon Fraser University, Surrey, BC, Canada.
You do not currently have access to this content.