Abstract

One way to enhance the thermal performance of the Li-ion batteries is embedding microgrooves inside the porous electrodes and flowing the electrolyte through these microgrooves. Heat transfer from the battery can be enhanced by having both convection and conduction heat transfers inside the electrodes, instead of conduction heat transfer alone. A two-dimensional thermal lattice Boltzmann method (LBM) was employed to predict electrolyte flow, heat transfer, and internal heat generation inside the positive porous electrode. Size and number of the microgrooves and the electrolyte flow velocity inside them were investigated, and it was found that embedding microgrooves inside the porous electrode improved the thermal performance of the Li-ion battery by keeping the electrode in lower temperatures and improving its temperature uniformity. Furthermore, increasing the electrolyte flow velocity as well as increasing the number of microgrooves (in a constant ratio between the total size of the microgrooves to the size of the porous electrode) kept the porous electrode in lower temperatures and enhanced temperature uniformity.

References

1.
Karimi
,
G.
, and
Li
,
X.
,
2013
, “
Thermal Management of Lithium-Ion Batteries for Electric Vehicles
,”
Int. J. Energy Res.
,
37
(
1
), pp.
13
24
.10.1002/er.1956
2.
Jiang
,
G.
,
Huang
,
J.
,
Liu
,
M.
, and
Cao
,
M.
,
2017
, “
Experiment and Simulation of Thermal Management for a Tube-Shell Li-Ion Battery Pack With Composite Phase Change Material
,”
Appl. Therm. Eng.
,
120
, pp.
1
9
.10.1016/j.applthermaleng.2017.03.107
3.
Mohammadian
,
S. K.
,
Rassoulinejad-Mousavi
,
S. M.
, and
Zhang
,
Y.
,
2015
, “
Thermal Management Improvement of an Air-Cooled High-Power Lithium-Ion Battery by Embedding Metal Foam
,”
J. Power Sources
,
296
, pp.
305
313
.10.1016/j.jpowsour.2015.07.056
4.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2017
, “
Cumulative Effects of Using Pin Fin Heat Sink and Porous Metal Foam on Thermal Management of Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
118
, pp.
375
384
.10.1016/j.applthermaleng.2017.02.121
5.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2015
, “
Thermal Management Optimization of an Air-Cooled Li-Ion Battery Module Using Pin-Fin Heat Sinks for Hybrid Electric Vehicles
,”
J. Power Sources
,
273
, pp.
431
439
.10.1016/j.jpowsour.2014.09.110
6.
Mohammadian
,
S. K.
,
He
,
Y.-L.
, and
Zhang
,
Y.
,
2015
, “
Internal Cooling of a Lithium-Ion Battery Using Electrolyte as Coolant Through Microchannels Embedded Inside the Electrodes
,”
J. Power Sources
,
293
, pp.
458
466
.10.1016/j.jpowsour.2015.05.055
7.
Lan
,
C.
,
Xu
,
J.
,
Qiao
,
Y.
, and
Ma
,
Y.
,
2016
, “
Thermal Management for High Power Lithium-Ion Battery by Minichannel Aluminum Tubes
,”
Appl. Therm. Eng.
,
101
, pp.
284
292
.10.1016/j.applthermaleng.2016.02.070
8.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2016
, “
Temperature Uniformity Improvement of an Air-Cooled High-Power Lithium-Ion Battery Using Metal and Nonmetal Foams
,”
ASME J. Heat Transfer
,
138
(
11
), p.
114502
.10.1115/1.4033811
9.
Shah
,
K.
,
McKee
,
C.
,
Chalise
,
D.
, and
Jain
,
A.
,
2016
, “
Experimental and Numerical Investigation of Core Cooling of Li-Ion Cells Using Heat Pipes
,”
Energy
,
113
, pp.
852
860
.10.1016/j.energy.2016.07.076
10.
Wu
,
W.
,
Yang
,
X.
,
Zhang
,
G.
,
Chen
,
K.
, and
Wang
,
S.
,
2017
, “
Experimental Investigation on the Thermal Performance of Heat Pipe-Assisted Phase Change Material Based Battery Thermal Management System
,”
Energy Convers. Manage.
,
138
, pp.
486
492
.10.1016/j.enconman.2017.02.022
11.
Xu
,
J.
,
Lan
,
C.
,
Qiao
,
Y.
, and
Ma
,
Y.
,
2017
, “
Prevent Thermal Runaway of Lithium-Ion Batteries With Minichannel Cooling
,”
Appl. Therm. Eng.
,
110
, pp.
883
890
.10.1016/j.applthermaleng.2016.08.151
12.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2016
, “
Effects of Size of Microchannels on Thermo-Electrical Performance of an Internally Cooled Li-Ion Battery Cell
,”
J. Electrochem. Energy Convers. Storage
,
13
(
4
), p.
044501
.10.1115/1.4035351
13.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
, “
Thermoelectric Effects of Size of Microchannels on an Internally Cooled Li-Ion Battery Cell
,”
ASME
Paper No. IMECE2016-65729.10.1115/IMECE2016-65729
14.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2018
, “
Improving Wettability and Preventing Li-Ion Batteries From Thermal Runaway Using Microchannels
,”
Int. J. Heat Mass Transfer
,
118
(
Suppl. C
), pp.
911
918
.10.1016/j.ijheatmasstransfer.2017.11.063
15.
Gao
,
D.
,
Chen
,
Z.
,
Chen
,
L.
, and
Zhang
,
D.
,
2017
, “
A Modified Lattice Boltzmann Model for Conjugate Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
105
, pp.
673
683
.10.1016/j.ijheatmasstransfer.2016.10.023
16.
Wang
,
Z.
,
Shang
,
H.
, and
Zhang
,
J.
,
2017
, “
Lattice Boltzmann Simulations of Heat Transfer in Fully Developed Periodic Incompressible Flows
,”
Phys. Rev. E
,
95
(
6
), p.
063309
.10.1103/PhysRevE.95.063309
17.
Guo
,
Z.
, and
Shu
,
C.
,
2013
,
Lattice Boltzmann Method and Its Applications in Engineering
,
World Scientific
,
Singapore
.
18.
Krüger
,
T.
,
Kusumaatmaja
,
H.
,
Kuzmin
,
A.
,
Shardt
,
O.
,
Silva
,
G.
, and
Viggen
,
E. M.
,
2017
,
The Lattice Boltzmann Method: Principles and Practice
, Springer International Publishing, Berlin.10.1007/978-3-319-44649-3
19.
Shan
,
X.
,
1997
, “
Simulation of Rayleigh-Bénard Convection Using a Lattice Boltzmann Method
,”
Phys. Rev. E
,
55
(
3
), pp.
2780
2788
.10.1103/PhysRevE.55.2780
20.
Grucelski
,
A.
, and
Pozorski
,
J.
,
2015
, “
Lattice Boltzmann Simulations of Heat Transfer in Flow Past a Cylinder and in Simple Porous Media
,”
Int. J. Heat Mass Transfer
,
86
, pp.
139
148
.10.1016/j.ijheatmasstransfer.2015.02.046
21.
Hu
,
Y.
,
Li
,
D.
,
Shu
,
S.
, and
Niu
,
X.
,
2015
, “
Study of Multiple Steady Solutions for the 2D Natural Convection in a Concentric Horizontal Annulus With a Constant Heat Flux Wall Using Immersed Boundary-Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
81
, pp.
591
601
.10.1016/j.ijheatmasstransfer.2014.10.050
22.
Yamamoto
,
K.
,
He
,
X.
, and
Doolen
,
G. D.
,
2002
, “
Simulation of Combustion Field With Lattice Boltzmann Method
,”
J. Stat. Phys.
,
107
(
1/2
), pp.
367
383
.10.1023/A:1014583226083
23.
Wang
,
L.
,
Mi
,
J.
, and
Guo
,
Z.
,
2016
, “
A Modified Lattice Bhatnagar–Gross–Krook Model for Convection Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
94
(
Suppl. C
), pp.
269
291
.10.1016/j.ijheatmasstransfer.2015.11.040
24.
Hu
,
Y.
,
Li
,
D.
,
Shu
,
S.
, and
Niu
,
X.
,
2017
, “
A Multiple-Relaxation-Time Lattice Boltzmann Model for the Flow and Heat Transfer in a Hydrodynamically and Thermally Anisotropic Porous Medium
,”
Int. J. Heat Mass Transfer
,
104
, pp.
544
558
.10.1016/j.ijheatmasstransfer.2016.08.008
25.
Guo
,
Z.
, and
Zhao
,
T.
,
2005
, “
A Lattice Boltzmann Model for Convection Heat Transfer in Porous Media
,”
Numer. Heat Transfer, Part B
,
47
(
2
), pp.
157
177
.10.1080/10407790590883405
26.
Shokouhmand
,
H.
,
Jam
,
F.
, and
Salimpour
,
M.
,
2009
, “
Simulation of Laminar Flow and Convective Heat Transfer in Conduits Filled With Porous Media Using Lattice Boltzmann Method
,”
Int. Commun. Heat Mass Transfer
,
36
(
4
), pp.
378
384
.10.1016/j.icheatmasstransfer.2008.11.016
27.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2019
, “
Convection Heat Transfer With Internal Heat Generation in Porous Media: Implementation of Thermal Lattice Boltzmann Method
,”
Numer. Heat Transfer, Part A: Appl.
,
76
(
3
), pp.
101
114
.10.1080/10407782.2019.1627831
28.
Chiu
,
K. S. W.
,
Joshi
,
S. A.
, and
Grew
,
N. K.
,
2009
, “
Lattice Boltzmann Model for Multi-Component Mass Transfer in a Solid Oxide Fuel Cell Anode With Heterogeneous Internal Reformation and Electrochemistry
,”
Eur. Phys. J. Spec. Top.
,
171
(
1
), pp.
159
165
.10.1140/epjst/e2009-01024-8
29.
Yuan
,
P.
, and
Schaefer
,
L.
,
2006
, “
A Thermal Lattice Boltzmann Two-Phase Flow Model and Its Application to Heat Transfer Problems—Part 1. Theoretical Foundation
,”
ASME J. Fluids Eng.
,
128
(
1
), pp.
142
150
.10.1115/1.2137343
30.
Tao
,
Y. B.
,
You
,
Y.
, and
He
,
Y. L.
,
2016
, “
Lattice Boltzmann Simulation on Phase Change Heat Transfer in Metal Foams/Paraffin Composite Phase Change Material
,”
Appl. Therm. Eng.
,
93
, pp.
476
485
.10.1016/j.applthermaleng.2015.10.016
31.
Gao
,
D.
,
Tian
,
F.-B.
,
Chen
,
Z.
, and
Zhang
,
D.
,
2017
, “
An Improved Lattice Boltzmann Method for Solid-Liquid Phase Change in Porous Media Under Local Thermal Non-Equilibrium Conditions
,”
Int. J. Heat Mass Transfer
,
110
, pp.
58
62
.10.1016/j.ijheatmasstransfer.2017.03.014
32.
Liu
,
Q.
,
He
,
Y.-L.
,
Li
,
Q.
, and
Tao
,
W.-Q.
,
2014
, “
A Multiple-Relaxation-Time Lattice Boltzmann Model for Convection Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
73
, pp.
761
775
.10.1016/j.ijheatmasstransfer.2014.02.047
33.
Huo
,
Y.
, and
Rao
,
Z.
,
2015
, “
The Numerical Investigation of Nanofluid Based Cylinder Battery Thermal Management Using Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
91
, pp.
374
384
.10.1016/j.ijheatmasstransfer.2015.07.128
34.
Lee
,
S. G.
,
Jeon
,
D. H.
,
Kim
,
B. M.
,
Kang
,
J. H.
, and
Kim
,
C.-J.
,
2013
, “
Lattice Boltzmann Simulation for Electrolyte Transport in Porous Electrode of Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
H258
H265
.10.1149/2.017306jes
35.
Lee
,
S. G.
, and
Jeon
,
D. H.
,
2014
, “
Effect of Electrode Compression on the Wettability of Lithium-Ion Batteries
,”
J. Power Sources
,
265
, pp.
363
369
.10.1016/j.jpowsour.2014.04.127
36.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2018
, “
Improving Electrolyte Transport Inside the li-Ion Porous Electrodes Using Microchannels
,”
16th International Heat Transfer Conference
, Beijing, China, Aug. 10–15, Paper No. IHTC-16.
37.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.10.1146/annurev.fluid.30.1.329
38.
Chen
,
Q.
,
Zhang
,
X.
, and
Zhang
,
J.
,
2015
, “
Effects of Reynolds and Prandtl Numbers on Heat Transfer Around a Circular Cylinder by the Simplified Thermal Lattice Boltzmann Model
,”
Commun. Comput. Phys.
,
17
(
4
), pp.
937
959
.10.4208/cicp.2014.m314
39.
Succi
,
S.
, and
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond
,
Oxford University Press
,
Oxford, UK
.
40.
Zhang
,
J.
,
2011
, “
Lattice Boltzmann Method for Microfluidics: Models and Applications
,”
Microfluid. Nanofluid.
,
10
(
1
), pp.
1
28
.10.1007/s10404-010-0624-1
41.
Li
,
Q.
,
Luo
,
K. H.
,
Kang
,
Q.
,
He
,
Y.
,
Chen
,
Q.
, and
Liu
,
Q.
,
2016
, “
Lattice Boltzmann Methods for Multiphase Flow and Phase-Change Heat Transfer
,”
Prog. Energy Combust. Sci.
,
52
, pp.
62
105
.10.1016/j.pecs.2015.10.001
42.
Singh
,
M.
,
Kaiser
,
J.
, and
Hahn
,
H.
,
2016
, “
Effect of Porosity on the Thick Electrodes for High Energy Density Lithium Ion Batteries for Stationary Applications
,”
Batteries
,
2
(
4
), p.
35
.10.3390/batteries2040035
43.
Drake
,
S. J.
,
Martin
,
M.
,
Wetz
,
D. A.
,
Ostanek
,
J. K.
,
Miller
,
S. P.
,
Heinzel
,
J. M.
, and
Jain
,
A.
,
2015
, “
Heat Generation Rate Measurement in a Li-Ion Cell at Large C-Rates Through Temperature and Heat Flux Measurements
,”
J. Power Sources
,
285
, pp.
266
273
.10.1016/j.jpowsour.2015.03.008
44.
Peng
,
X.
,
Chen
,
S.
,
Garg
,
A.
,
Bao
,
N.
, and
Panda
,
B.
,
2019
, “
A Review of the Estimation and Heating Methods for Lithium-Ion Batteries Pack at the Cold Environment
,”
Energy Sci. Eng.
,
7
(
3
), pp.
645
662
.10.1002/ese3.279
You do not currently have access to this content.