Abstract

An improved moving particle semi-implicit (MPS) method is presented to simulate heat conduction with temperature-dependent thermal conductivity. Based on Taylor expansion, a modified Laplacian operator is proposed, and its accuracy in irregular particle distributions is verified. Two problems are considered: (1) heat conduction in a one-dimensional (1D) slab and (2) heat conduction in a perforated sector with different boundary conditions. Consistent results with a mesh-based method are obtained, and the feasibility of the proposed method for heat conduction simulation with temperature-dependent conductivity is demonstrated.

References

1.
Koshizuka
,
S.
, and
Oka
,
Y.
,
1996
, “
Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid
,”
Nucl. Sci. Eng.
,
123
(
3
), pp.
421
434
.10.13182/NSE96-A24205
2.
Khayyer
,
A.
, and
Gotoh
,
H.
,
2009
, “
Modified Moving Particle Semi-Implicit Methods for the Prediction of 2D Wave Impact Pressure
,”
Coastal Eng.
,
56
(
4
), pp.
419
440
.10.1016/j.coastaleng.2008.10.004
3.
Jeong
,
S. M.
,
Nam
,
J. W.
,
Hwang
,
S. C.
,
Park
,
J. C.
, and
Kim
,
M. H.
,
2013
, “
Numerical Prediction of Oil Amount Leaked From a Damaged Tank Using Two-Dimensional Moving Particle Simulation Method
,”
Ocean Eng.
,
69
, pp.
70
78
.10.1016/j.oceaneng.2013.05.009
4.
Khanpour
,
M.
,
Zarrati
,
A. R.
,
Kolahdoozan
,
M.
,
Shakibaeinia
,
A.
, and
Jafarinik
,
S.
,
2016
, “
Numerical Modeling of Free Surface Flow in Hydraulic Structures Using Smoothed Particle Hydrodynamics
,”
Appl. Math. Modell.
,
40
(
23–24
), pp.
9821
9834
.10.1016/j.apm.2016.06.032
5.
Gotoh
,
H.
, and
Khayyer
,
A.
,
2018
, “
On the State-of-the-Art of Particle Methods for Coastal and Ocean Engineering
,”
Coastal Eng. J.
,
60
(
1
), pp.
79
103
.10.1080/21664250.2018.1436243
6.
Guo
,
K.
,
Chen
,
R.
,
Qiu
,
S.
,
Tian
,
W.
, and
Su
,
G.
,
2018
, “
An Improved Multiphase Moving Particle Semi-Implicit Method in Bubble Rising Simulations With Large Density Ratios
,”
Nucl. Eng. Des.
,
340
, pp.
370
387
.10.1016/j.nucengdes.2018.10.006
7.
Shimizu
,
Y.
,
Gotoh
,
H.
, and
Khayyer
,
A.
,
2018
, “
An MPS-Based Particle Method for Simulation of Multiphase Flows Characterized by High Density Ratios by Incorporation of Space Potential Particle Concept
,”
Comput. Math. Appl.
,
76
(
5
), pp.
1108
1129
.10.1016/j.camwa.2018.06.002
8.
Khayyer
,
A.
,
Gotoh
,
H.
, and
Shimizu
,
Y.
,
2019
, “
A Projection-Based Particle Method With Optimized Particle Shifting for Multiphase Flows With Large Density Ratios and Discontinuous Density Fields
,”
Comput. Fluids
,
179
, pp.
356
371
.10.1016/j.compfluid.2018.10.018
9.
Wang
,
J.
, and
Zhang
,
X.
,
2019
, “
Improved Moving Particle Semi-Implicit Method for Multiphase Flow With Discontinuity
,”
Comput. Methods Appl. Mech. Eng.
,
346
, pp.
312
331
.10.1016/j.cma.2018.12.009
10.
Duan
,
R. Q.
,
Jiang
,
S. Y.
,
Koshizuka
,
S.
,
Oka
,
Y.
, and
Yamaguchi
,
A.
,
2006
, “
Direct Simulation of Flashing Liquid Jets Using the MPS Method
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
402
405
.10.1016/j.ijheatmasstransfer.2005.06.038
11.
Liang
,
Y.
,
Sun
,
Z.
,
Xi
,
G.
, and
Liu
,
L.
,
2015
, “
Numerical Models for Heat Conduction and Natural Convection With Symmetry Boundary Condition Based on Particle Method
,”
Int. J. Heat Mass Transfer
,
88
, pp.
433
444
.10.1016/j.ijheatmasstransfer.2015.04.105
12.
Xue
,
T.
,
Tamma
,
K. K.
, and
Zhang
,
X.
,
2016
, “
A Consistent Moving Particle System Simulation Method: Applications to Parabolic/Hyperbolic Heat Conduction Type Problems
,”
Int. J. Heat Mass Transfer
,
101
, pp.
365
372
.10.1016/j.ijheatmasstransfer.2016.05.020
13.
Sun
,
Z.
,
Chen
,
X.
,
Xi
,
G.
,
Liu
,
L.
, and
Chen
,
X.
,
2017
, “
Mass Transfer Mechanisms of Rotary Atomization: A Numerical Study Using the Moving Particle Semi-Implicit Method
,”
Int. J. Heat Mass Transfer
,
105
, pp.
90
101
.10.1016/j.ijheatmasstransfer.2016.09.053
14.
Duan
,
G.
, and
Chen
,
B.
,
2013
, “
Stability and Accuracy Analysis for Viscous Flow Simulation by the Moving Particle Semi-Implicit Method
,”
Fluid Dyn. Res.
,
45
(
3
), p.
035501
.10.1088/0169-5983/45/3/035501
15.
Khayyer
,
A.
, and
Gotoh
,
H.
,
2011
, “
Enhancement of Stability and Accuracy of the Moving Particle Semi-Implicit Method
,”
J. Comput. Phys.
,
230
(
8
), pp.
3093
3118
.10.1016/j.jcp.2011.01.009
16.
Wang
,
J.
, and
Zhang
,
X.
,
2018
, “
Modified Particle Method With Integral Navier-Stokes Formulation for Incompressible Flows
,”
J. Comput. Phys.
,
366
, pp.
1
13
.10.1016/j.jcp.2018.03.043
17.
Tsuruta
,
N.
,
Khayyer
,
A.
, and
Gotoh
,
H.
,
2013
, “
A Short Note on Dynamic Stabilization of Moving Particle Semi-Implicit Method
,”
Comput. Fluids
,
82
, pp.
158
164
.10.1016/j.compfluid.2013.05.001
18.
Liu
,
X.
,
Morita
,
K.
, and
Zhang
,
S.
,
2018
, “
An Advanced Moving Particle Semi-Implicit Method for Accurate and Stable Simulation of Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
339
, pp.
467
487
.10.1016/j.cma.2018.05.005
19.
Souto-Iglesias
,
A.
,
Macià
,
F.
,
González
,
L. M.
, and
Cercos-Pita
,
J. L.
,
2013
, “
On the Consistency of MPS
,”
Comput. Phys. Commun.
,
184
(
3
), pp.
732
745
.10.1016/j.cpc.2012.11.009
20.
Ng
,
K.
,
Hwang
,
Y.
, and
Sheu
,
T. W.
,
2014
, “
On the Accuracy Assessment of Laplacian Models in MPS
,”
Comput. Phys. Commun.
,
185
(
10
), pp.
2412
2426
.10.1016/j.cpc.2014.05.012
21.
Zhang
,
S.
,
Morita
,
K.
,
Fukuda
,
K.
, and
Shirakawa
,
N.
,
2006
, “
An Improved MPS Method for Numerical Simulations of Convective Heat Transfer Problems
,”
Int. J. Numer. Methods Fluids
,
51
(
1
), pp.
31
47
.10.1002/fld.1106
22.
Khayyer
,
A.
, and
Gotoh
,
H.
,
2010
, “
A Higher Order Laplacian Model for Enhancement and Stabilization of Pressure Calculation by the MPS Method
,”
Appl. Ocean Res.
,
32
(
1
), pp.
124
131
.10.1016/j.apor.2010.01.001
23.
Ikari
,
H.
,
Khayyer
,
A.
, and
Gotoh
,
H.
,
2015
, “
Corrected Higher Order Laplacian for Enhancement of Pressure Calculation by Projection-Based Particle Methods With Applications in Ocean Engineering
,”
J. Ocean Eng. Mar. Energy
,
1
(
4
), pp.
361
376
.10.1007/s40722-015-0026-2
24.
Basic
,
J.
,
Degiuli
,
N.
, and
Ban
,
D.
,
2018
, “
A Class of Renormalised Meshless Laplacians for Boundary Value Problems
,”
J. Comput. Phys.
,
354
, pp.
269
287
.10.1016/j.jcp.2017.11.003
You do not currently have access to this content.