Abstract
An improved moving particle semi-implicit (MPS) method is presented to simulate heat conduction with temperature-dependent thermal conductivity. Based on Taylor expansion, a modified Laplacian operator is proposed, and its accuracy in irregular particle distributions is verified. Two problems are considered: (1) heat conduction in a one-dimensional (1D) slab and (2) heat conduction in a perforated sector with different boundary conditions. Consistent results with a mesh-based method are obtained, and the feasibility of the proposed method for heat conduction simulation with temperature-dependent conductivity is demonstrated.
Issue Section:
Technical Briefs
References
1.
Koshizuka
,
S.
, and
Oka
,
Y.
, 1996
, “
Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid
,” Nucl. Sci. Eng.
,
123
(3
), pp. 421
–434
.10.13182/NSE96-A242052.
Khayyer
,
A.
, and
Gotoh
,
H.
, 2009
, “
Modified Moving Particle Semi-Implicit Methods for the Prediction of 2D Wave Impact Pressure
,” Coastal Eng.
,
56
(4
), pp. 419
–440
.10.1016/j.coastaleng.2008.10.0043.
Jeong
,
S. M.
,
Nam
,
J. W.
,
Hwang
,
S. C.
,
Park
,
J. C.
, and
Kim
,
M. H.
, 2013
, “
Numerical Prediction of Oil Amount Leaked From a Damaged Tank Using Two-Dimensional Moving Particle Simulation Method
,” Ocean Eng.
,
69
, pp. 70
–78
.10.1016/j.oceaneng.2013.05.0094.
Khanpour
,
M.
,
Zarrati
,
A. R.
,
Kolahdoozan
,
M.
,
Shakibaeinia
,
A.
, and
Jafarinik
,
S.
, 2016
, “
Numerical Modeling of Free Surface Flow in Hydraulic Structures Using Smoothed Particle Hydrodynamics
,” Appl. Math. Modell.
,
40
(23–24
), pp. 9821
–9834
.10.1016/j.apm.2016.06.0325.
Gotoh
,
H.
, and
Khayyer
,
A.
, 2018
, “
On the State-of-the-Art of Particle Methods for Coastal and Ocean Engineering
,” Coastal Eng. J.
,
60
(1
), pp. 79
–103
.10.1080/21664250.2018.14362436.
Guo
,
K.
,
Chen
,
R.
,
Qiu
,
S.
,
Tian
,
W.
, and
Su
,
G.
, 2018
, “
An Improved Multiphase Moving Particle Semi-Implicit Method in Bubble Rising Simulations With Large Density Ratios
,” Nucl. Eng. Des.
,
340
, pp. 370
–387
.10.1016/j.nucengdes.2018.10.0067.
Shimizu
,
Y.
,
Gotoh
,
H.
, and
Khayyer
,
A.
, 2018
, “
An MPS-Based Particle Method for Simulation of Multiphase Flows Characterized by High Density Ratios by Incorporation of Space Potential Particle Concept
,” Comput. Math. Appl.
,
76
(5
), pp. 1108
–1129
.10.1016/j.camwa.2018.06.0028.
Khayyer
,
A.
,
Gotoh
,
H.
, and
Shimizu
,
Y.
, 2019
, “
A Projection-Based Particle Method With Optimized Particle Shifting for Multiphase Flows With Large Density Ratios and Discontinuous Density Fields
,” Comput. Fluids
,
179
, pp. 356
–371
.10.1016/j.compfluid.2018.10.0189.
Wang
,
J.
, and
Zhang
,
X.
, 2019
, “
Improved Moving Particle Semi-Implicit Method for Multiphase Flow With Discontinuity
,” Comput. Methods Appl. Mech. Eng.
,
346
, pp. 312
–331
.10.1016/j.cma.2018.12.00910.
Duan
,
R. Q.
,
Jiang
,
S. Y.
,
Koshizuka
,
S.
,
Oka
,
Y.
, and
Yamaguchi
,
A.
, 2006
, “
Direct Simulation of Flashing Liquid Jets Using the MPS Method
,” Int. J. Heat Mass Transfer
,
49
(1–2
), pp. 402
–405
.10.1016/j.ijheatmasstransfer.2005.06.03811.
Liang
,
Y.
,
Sun
,
Z.
,
Xi
,
G.
, and
Liu
,
L.
, 2015
, “
Numerical Models for Heat Conduction and Natural Convection With Symmetry Boundary Condition Based on Particle Method
,” Int. J. Heat Mass Transfer
,
88
, pp. 433
–444
.10.1016/j.ijheatmasstransfer.2015.04.10512.
Xue
,
T.
,
Tamma
,
K. K.
, and
Zhang
,
X.
, 2016
, “
A Consistent Moving Particle System Simulation Method: Applications to Parabolic/Hyperbolic Heat Conduction Type Problems
,” Int. J. Heat Mass Transfer
,
101
, pp. 365
–372
.10.1016/j.ijheatmasstransfer.2016.05.02013.
Sun
,
Z.
,
Chen
,
X.
,
Xi
,
G.
,
Liu
,
L.
, and
Chen
,
X.
, 2017
, “
Mass Transfer Mechanisms of Rotary Atomization: A Numerical Study Using the Moving Particle Semi-Implicit Method
,” Int. J. Heat Mass Transfer
,
105
, pp. 90
–101
.10.1016/j.ijheatmasstransfer.2016.09.05314.
Duan
,
G.
, and
Chen
,
B.
, 2013
, “
Stability and Accuracy Analysis for Viscous Flow Simulation by the Moving Particle Semi-Implicit Method
,” Fluid Dyn. Res.
,
45
(3
), p. 035501
.10.1088/0169-5983/45/3/03550115.
Khayyer
,
A.
, and
Gotoh
,
H.
, 2011
, “
Enhancement of Stability and Accuracy of the Moving Particle Semi-Implicit Method
,” J. Comput. Phys.
,
230
(8
), pp. 3093
–3118
.10.1016/j.jcp.2011.01.00916.
Wang
,
J.
, and
Zhang
,
X.
, 2018
, “
Modified Particle Method With Integral Navier-Stokes Formulation for Incompressible Flows
,” J. Comput. Phys.
,
366
, pp. 1
–13
.10.1016/j.jcp.2018.03.04317.
Tsuruta
,
N.
,
Khayyer
,
A.
, and
Gotoh
,
H.
, 2013
, “
A Short Note on Dynamic Stabilization of Moving Particle Semi-Implicit Method
,” Comput. Fluids
,
82
, pp. 158
–164
.10.1016/j.compfluid.2013.05.00118.
Liu
,
X.
,
Morita
,
K.
, and
Zhang
,
S.
, 2018
, “
An Advanced Moving Particle Semi-Implicit Method for Accurate and Stable Simulation of Incompressible Flows
,” Comput. Methods Appl. Mech. Eng.
,
339
, pp. 467
–487
.10.1016/j.cma.2018.05.00519.
Souto-Iglesias
,
A.
,
Macià
,
F.
,
González
,
L. M.
, and
Cercos-Pita
,
J. L.
, 2013
, “
On the Consistency of MPS
,” Comput. Phys. Commun.
,
184
(3
), pp. 732
–745
.10.1016/j.cpc.2012.11.00920.
Ng
,
K.
,
Hwang
,
Y.
, and
Sheu
,
T. W.
, 2014
, “
On the Accuracy Assessment of Laplacian Models in MPS
,” Comput. Phys. Commun.
,
185
(10
), pp. 2412
–2426
.10.1016/j.cpc.2014.05.01221.
Zhang
,
S.
,
Morita
,
K.
,
Fukuda
,
K.
, and
Shirakawa
,
N.
, 2006
, “
An Improved MPS Method for Numerical Simulations of Convective Heat Transfer Problems
,” Int. J. Numer. Methods Fluids
,
51
(1
), pp. 31
–47
.10.1002/fld.110622.
Khayyer
,
A.
, and
Gotoh
,
H.
, 2010
, “
A Higher Order Laplacian Model for Enhancement and Stabilization of Pressure Calculation by the MPS Method
,” Appl. Ocean Res.
,
32
(1
), pp. 124
–131
.10.1016/j.apor.2010.01.00123.
Ikari
,
H.
,
Khayyer
,
A.
, and
Gotoh
,
H.
, 2015
, “
Corrected Higher Order Laplacian for Enhancement of Pressure Calculation by Projection-Based Particle Methods With Applications in Ocean Engineering
,” J. Ocean Eng. Mar. Energy
,
1
(4
), pp. 361
–376
.10.1007/s40722-015-0026-224.
Basic
,
J.
,
Degiuli
,
N.
, and
Ban
,
D.
, 2018
, “
A Class of Renormalised Meshless Laplacians for Boundary Value Problems
,” J. Comput. Phys.
,
354
, pp. 269
–287
.10.1016/j.jcp.2017.11.003Copyright © 2020 by ASME
You do not currently have access to this content.