Abstract

Oven curing of automotive parts is a complex industrial process involving multiple scales ranging from submillimeter thick layers to the size of the ovens, and long curing times. In this work, the process is simulated by state-of-the-art immersed boundary techniques. First, the simulations are validated against temperature measurements, in a lab scale oven, of three parts taken from a truck cab. Second, a novel multicriteria optimization method is proposed. It is applied to study the optimal positioning of the three parts with respect to curing time and energy consumption. The results presented demonstrate that complex industrial heat transfer processes can be optimized by combining state-of-the-art simulation technology and deterministic optimization techniques.

References

1.
Edelvik
,
F.
,
Mark
,
A.
,
Karlsson
,
N.
,
Johnson
,
T.
, and
Carlson
,
J. S.
,
2017
, “
Math-Based Algorithms and Software for Virtual Product Realization Implemented in Automotive Paint Shops
,”
Math for the Digital Factory
,
L.
Ghezzi
,
D.
Hömberg
, and
C.
Landry
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
231
251
.
2.
Ashrafizadeh
,
A.
,
Mehdipour
,
R.
, and
Aghanajafi
,
C.
,
2012
, “
A Hybrid Optimization Algorithm for the Thermal Design of Radiant Paint Cure Ovens
,”
Appl. Therm. Eng.
,
40
, pp.
56
63
.10.1016/j.applthermaleng.2012.01.062
3.
Xiao
,
J.
,
Li
,
J.
,
Xu
,
Q.
,
Huang
,
Y.
, and
Lou
,
H. H.
,
2006
, “
Acs–Based Dynamic Optimization for Curing of Polymeric Coating
,”
AIChE J.
,
52
(
4
), pp.
1410
1422
.10.1002/aic.10750
4.
Mosavati
,
M.
,
Kowsary
,
F.
, and
Mosavati
,
B.
,
2013
, “
A Novel, Noniterative Inverse Boundary Design Regularized Solution Technique Using the Backward Monte Carlo Method
,”
ASME J. Heat Transfer
,
135
(
4
), p.
042701
.10.1115/1.4022994
5.
Ehrgott
,
M.
,
2005
,
Multicriteria Optimization
, 2nd ed.,
Springer
,
Berlin and London
.
6.
Andersson
,
T.
,
Nowak
,
D.
,
Johnson
,
T.
,
Mark
,
A.
,
Edelvik
,
F.
, and
Küfer
,
K.-H.
,
2018
, “
Multiobjective Optimization of a Heat-Sink Design Using the Sandwiching Algorithm and an Immersed Boundary Conjugate Heat Transfer Solver
,”
ASME J. Heat Transfer
,
140
(
10
), p.
142
.10.1115/1.4040086
7.
IPS Oven Simulation
,
2020
, “
IPS Oven Simulation
,” accessed October 19, 2020, https://www.industrialpathsolutions.com/ips-oven-simulation
8.
Mark
,
A.
,
Svenning
,
E.
, and
Edelvik
,
F.
,
2013
, “
An Immersed Boundary Method for Simulation of Flow With Heat Transfer
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
424
435
.10.1016/j.ijheatmasstransfer.2012.09.010
9.
Göhl
,
J.
,
Mark
,
A.
,
Sasic
,
S.
, and
Edelvik
,
F.
,
2018
, “
An Immersed Boundary Based Dynamic Contact Angle Framework for Handling Complex Surfaces of Mixed Wettabilities
,”
Int. J. Multiphase Flow
,
109
, pp.
164
177
.10.1016/j.ijmultiphaseflow.2018.08.001
10.
Göhl
,
J.
,
Markstedt
,
K.
,
Mark
,
A.
,
Håkansson
,
K.
,
Gatenholm
,
P.
, and
Edelvik
,
F.
,
2018
, “
Simulations of 3D Bioprinting: Predicting Bioprintability of Nanofibrillar Inks
,”
Biofabriaction
,
10
(
3
), p.
034105
.10.1088/1758-5090/aac872
11.
Ingelsten
,
S.
,
Mark
,
A.
, and
Edelvik
,
F.
,
2019
, “
A Lagrangian-Eulerian Framework for Simulation of Transient Viscoelastic Fluid Flow
,”
J. Non-Newtonian Fluid Mech.
,
266
, pp.
20
32
.10.1016/j.jnnfm.2019.02.005
12.
Ingelsten
,
S.
,
Mark
,
A.
,
Jareteg
,
K.
,
Kádár
,
R.
, and
Edelvik
,
F.
,
2020
, “
Computationally Efficient Viscoelastic Flow Simulation Using a Lagrangian-Eulerian Method and Gpu-Acceleration
,”
J. Non-Newtonian Fluid Mech.
,
279
, p.
104264
.10.1016/j.jnnfm.2020.104264
13.
Johnson
,
T.
,
Röyttä
,
P.
,
Mark
,
A.
, and
Edelvik
,
F.
,
2016
, “
Simulation of the Spherical Orientation Probability Distribution of Paper Fibers in an Entire Suspension Using Immersed Boundary Methods
,”
J. Non-Newtonian Fluid Mech.
,
229
, pp.
1
7
.10.1016/j.jnnfm.2016.01.001
14.
Mark
,
A.
,
2008
,
The Mirroring Immersed Boundary Method-Modeling Fluids With Moving and Interacting Bodies
,
Chalmers University of Technology
,
Gothenburg, Sweden
.
15.
Mark
,
A.
, and
van Wachem
,
B. G.
,
2008
, “
Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method
,”
J. Comput. Phys.
,
227
(
13
), pp.
6660
6680
.10.1016/j.jcp.2008.03.031
16.
Svelander
,
F.
,
Kettil
,
G.
,
Johnson
,
T.
,
Mark
,
A.
,
Logg
,
A.
, and
Edelvik
,
F.
,
2018
, “
Robust Intersection of Structured Hexahedral Meshes and Degenerate Triangle Meshes With Volume Fraction Applications
,”
Numer. Algorithms
,
77
(
4
), pp.
1029
1068
.10.1007/s11075-017-0352-7
17.
Stokes
,
G.
,
1845
, “
On the Theories of the Internal Friction of Fluids Motion, and of the Equilibrium and Motion of Elastic Solids
,”
Trans. Camb. Phil. Soc.
,
8
, pp.
287
305
.10.1017/CBO9780511702242.005
18.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
19.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
M. R.
,
1994
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
.
20.
Wilcox
,
D.
,
2010
,
Turbulence Modeling for CFD
,
DCW Industries
,
Glendale, CA
.
21.
Kalitzin
,
G.
,
Medic
,
G.
,
Iaccarino
,
G.
, and
Durbin
,
P.
,
2005
, “
Near-Wall Behavior of Rans Turbulence Models and Implications for Wall Functions
,”
J. Comput. Phys.
,
204
(
1
), pp.
265
291
.10.1016/j.jcp.2004.10.018
22.
Fourier
,
J.
, 1822,
Theorie Analytique de la Chaleur. irmin Didot
,
Reissued by Cambridge University Press
(
2009
),
Cambridge, UK
.
23.
Powell
,
M. J. D.
,
1994
,
A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation
,
Springer
,
Dordrecht, The Netherlands
, pp.
51
67
.
24.
Johnson
,
S. G.
, “
The NLopt Nonlinear-Optimization Package
,” accessed Oct. 19, 2020, http://github.com/stevengj/nlopt
25.
Lagarias
,
J.
,
Reeds
,
J.
,
Wright
,
M.
, and
Wright
,
P.
,
1998
, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.10.1137/S1052623496303470
You do not currently have access to this content.