Abstract

Since its initial development as a specialty technique for modeling neutron transport in fissile materials almost 80 years ago, the Monte Carlo method has since been deployed in almost every area of science and engineering, including radiative transfer. This paper reviews the history and progress in Monte Carlo methods for simulating radiative energy transfer, with emphasis on advances over the past 25 years. A short historical review that emphasizes the probabilistic foundations of the method, is followed by discussions of recent extensions and applications, including variance reduction techniques, high fidelity simulations in complex media, and a discussion of unresolved issues. The article concludes with an outlook for the method as impacted by advancements in algorithm development as well as massively parallel and quantum computing.

References

1.
Metropolis
,
N.
, and
Ulam
,
S.
,
1949
, “
The Monte Carlo Method
,”
J. Am. Stat. Assoc.
,
44
(
247
), pp.
335
341
.September.10.1080/01621459.1949.10483310
2.
Kahn
,
H.
,
1956
, “
Applications of Monte Carlo
,” Rand Corporation, Santa Monica, CA, Report No. RM-1237-AEC (AEC No. AECU-3259).
3.
Metropolis
,
N.
,
1987
, “
The Beginning of the Monte Carlo Method
,”
Los Alamos Sci.
,
15
, pp.
125
130
.
4.
Fleck
,
J. A.
,
1963
, “
The Calculation of Nonlinear Radiation Transport by a Monte Carlo Method: Statistical Physics
,”
Methods Comp. Phys.
,
1
, pp.
43
65
(Academic Press).
5.
Fleck
,
J. A.
, and
Cummings
,
J. A.
, Jr.
,
1971
, “
An Implicit Monte Carlo Scheme for Calculating Time and Frequency Dependent Nonlinear Radiation Transport
,”
J. Comp. Phys.
,
8
(
3
), pp.
313
342
.10.1016/0021-9991(71)90015-5
6.
Martin
,
W. R.
, and
Brown
,
F. B.
,
2001
, “
Comparison of Monte Carlo Methods for Nonlinear Radiation Transport
,”
M&C 2001, Methods and Computation Division, ANS International Meeting on Mathematical Methods for Nuclear Applications
,
Salt Lake City, UT
, Report No. LA-UR-01-1728, TRN: US0102839.
7.
Wollaber
,
A. B.
,
2016
, “
Four Decades of Implicit Monte Carlo
,”
J. Comp. Theor. Transp.
,
45
(
1–2
), pp.
1
70
.10.1080/23324309.2016.1138132
8.
Howell
,
J. R.
, and
Perlmutter
,
M.
,
1964
, “
Monte Carlo Solution of Thermal Transfer Through Radiant Media Between Gray Walls
,”
ASME J. Heat Transfer
,
86
(
1
), pp.
116
122
.10.1115/1.3687044
9.
Perlmutter
,
M.
, and
Howell
,
J. R.
,
1964
, “
Radiant Transfer Through a Gray Gas Between Concentric Cylinders Using Monte Carlo
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
169
179
.10.1115/1.3687090
10.
Howell
,
J. R.
, and
Perlmutter
,
M.
,
1964
, “
Monte Carlo Solution of Radiant Heat Transfer in Nongrey Nonisothermal Gas With Temperature Dependent Properties
,”
AIChE J.
,
10
(
4
), pp.
562
567
.July.10.1002/aic.690100429
11.
Campbell
,
P. M.
,
1967
, “
Monte Carlo Method for Radiative Transfer
,”
Int. J Heat Mass Transfer
,
10
(
4
), pp.
519
527
.10.1016/0017-9310(67)90171-8
12.
Howell
,
J. R.
,
1968
, “
Application of Monte Carlo to Heat Transfer Problems
,”
Advances in Heat Transfer
, Vol.
5
,
J. P.
Hartnett
and
T.
Irvine
, eds.,
Academic Press
,
San Diego
, pp.
1
54
.
13.
Halton
,
J. H.
,
1970
, “
A Retrospective and Prospective Survey of the Monte Carlo Method
,”
SIAM Rev.
,
12
(
1
), pp.
1
63
.10.1137/1012001
14.
Haji-Sheikh
,
A.
,
1988
, “
Monte Carlo Methods
,”
Handbook of Numerical Heat Transfer
,
Wiley Interscience
,
New York
, pp.
673
722
.
15.
Yang
,
W.-J.
,
Taniguchi
,
H.
, and
Kudo
,
K.
,
1995
, “
Radiative Heat Transfer by the Monte Carlo Method
,”
Advances in Heat Transfer
, Vol.
27
,
J. P.
Hartnett
and
T. F.
Irvine
, eds.,
Academic Press
,
San Diego
, pp.
1
215
.
16.
Howell
,
J. R.
,
1998
, “
The Monte Carlo Method in Radiative Heat Transfer
,”
ASME J. Heat Transfer
,
120
(
3
), pp.
547
560
.10.1115/1.2824310
17.
Farmer
,
J. T.
, and
Howell
,
J. R.
,
1998
, “
Monte Carlo Strategies for Radiative Transfer in Participating Media
,”
Advances in Heat Transfer
, Vol.
31
,
J. P.
Hartnett
and
T.
Irvine
, eds.,
Academic Press
,
San Diego
, CA, pp.
1
97
.
18.
Haji-Sheikh
,
A.
, and
Howell
,
J. R.
,
2006
, “
Monte Carlo Methods
,”
Handbook of Numerical Heat Transfer
, 2nd ed.,
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J. Y.
Murthy
, eds., Chap. 8,
Wiley Interscience
,
New York
, pp.
249
296
.
19.
Ertürk
,
H.
, and
Howell
,
J. R.
,
2017
, “
Monte Carlo Methods for Radiative Transfer
,”
Handbook of Thermal Science and Engineering
,
F.
Kulacki
, ed.,
Springer
,
Cham
, pp.
1
43
.
20.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
, 3rd ed.,
Academic Press/Elsevier
,
New York
.
21.
Mahan
,
J. R.
,
2018
,
The Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics
,
Wiley
,
New York
.
22.
Howell
,
J. R.
,
Mengüç
,
M. P.
,
Daun
,
K.
, and
Siegel
,
R.
,
2021
,
Thermal Radiation Heat Transfer
, 7th ed.,
Taylor and Francis/CRC
,
Boca Raton, FL
.
23.
Mishchenko
,
M. I.
,
2014
,
Electromagnetic Scattering by Particles and Particle Groups: An Introduction
,
Cambridge University Press
,
New York
.
24.
Zaremba
,
S. K.
,
1966
, “
Good Lattice Points, Discrepancy, and Numerical Integration
,”
Ann. Mat. Pura Appl.
,
73
(
1
), pp.
293
317
.10.1007/BF02415091
25.
Hickernell
,
F. J.
,
1998
, “
A Generalized Discrepancy and Quadrature Error Bound
,”
Math. Comput.
,
67
(
221
), pp.
299
322
.10.1090/S0025-5718-98-00894-1
26.
Brandolini
,
L.
,
Choirat
,
C.
,
Colzani
,
L.
,
Gigante
,
G.
,
Seri
,
R.
, and
Travaglini
,
G.
,
2010
, “
Quadrature Rules and Distribution of Points on Manifolds
,”
Ann. Sc. Norm. Super. Pisa Cl. Sci.
,
13
, pp.
889
923
.http://arxiv.org/abs/arXiv:1012.5409v1
27.
Morokoff
,
W. J.
, and
Caflisch
,
R. E.
,
1995
, “
Quasi-Monte Carlo Integration
,”
J. Comp. Phys.
,
122
(
2
), pp.
218
230
.10.1006/jcph.1995.1209
28.
Palluotto
,
L.
,
Dumont
,
N.
,
Rodrigues
,
P.
,
Gicquel
,
O.
, and
Vicquelin
,
R.
,
2019
, “
Assessment of Randomized Quasi-Monte Carlo Method Efficiency in Radiative Transfer Simulations
,”
J. Quant. Spectrosc. Radiat. Trans.
,
236
, p.
106570
.10.1016/j.jqsrt.2019.07.013
29.
Kowsary
,
F.
,
1999
, “
A Computational Efficient Method for Monte Carlo Simulation of Diffuse Radiant Emission or Reflection
,”
Int. J. Heat Mass Transfer
,
42
(
1
), pp.
193
195
.10.1016/S0017-9310(98)00087-8
30.
Vujičić
,
M. R.
,
Lavery
,
N. P.
, and
Brown
,
S. G. R.
,
2006
, “
Numerical Sensitivity and View Factor Calculation Using the Monte Carlo Method
,”
Proc. Inst. Mech. Eng. C
,
220
(
5
), pp.
697
702
.10.1243/09544062JMES139
31.
Vujičić
,
M. R.
,
Lavery
,
N. P.
, and
Brown
,
S. G. R.
,
2005
, “
View Factor Calculation Using the Monte Carlo Method and Numerical Sensitivity
,”
Commun. Numer. Methods Eng.
,
22
(
3
), pp.
197
203
.10.1002/cnm.805
32.
Mazumder
,
S.
,
2006
, “
Methods to Accelerate Ray Tracing in the Monte Carlo Method for Surface-to-Surface Radiation Transport
,”
ASME J. Heat Transfer
,
128
(
9
), pp.
945
952
.10.1115/1.2241978
33.
Walker
,
T.
,
Xue
,
S.-C.
, and
Barton
,
G. W.
,
2010
, “
Numerical Determination of Radiative View Factors Using Ray Tracing
,”
ASME J. Heat Transfer
,
132
(
7
), p.
072702
.10.1115/1.4000974
34.
Mirhosseini
,
M.
, and
Saboonchi
,
A.
,
2011
, “
View Factor Calculation Using the Monte Carlo Method for a 3D Strip Element to Circular Cylinder
,”
Intl. Comms. Heat Mass Transfer
,
38
(
6
), pp.
821
836
.10.1016/j.icheatmasstransfer.2011.03.022
35.
Walker
,
T.
,
Xue
,
S.-C.
, and
Barton
,
G. W.
,
2012
, “
A Robust Monte Carlo-Based Ray-Tracing Approach for the Calculation of View Factors in Arbitrary Three-Dimensional Geometries
,”
Comput. Therm. Sci.
,
4
(
5
), pp.
425
442
.10.1615/ComputThermalScien.2012006084
36.
Khanna
,
S.
,
Yadav
,
U.
, and
Prasad
,
M. K. E.
,
2013
, “
Computation of Total Exchange Areas Using Monte Carlo Method
,”
J. Future Eng. Technol.
,
8
(
3
), pp.
28
34
.10.26634/jfet.8.3.2219
37.
He
,
F.
,
Shi
,
J.
,
Zhou
,
L.
,
Li
,
W.
, and
Li
,
X.
,
2018
, “
Monte Carlo Calculation of View Factors Between Some Complex Surfaces: Rectangular Plane and Parallel Cylinder, Rectangular Plane and Torus, Especially Cold-Rolled Strip and W-Shaped Radiant Tube in Continuous Annealing Furnace
,”
Intl. J. Therm. Sci.
,
134
, pp.
465
474
.10.1016/j.ijthermalsci.2018.05.050
38.
Mazumder
,
S.
,
2019
, “
Application of a Variance Reduction Technique to Surface-to-Surface Monte Carlo Radiation Exchange Calculations
,”
Int. J. Heat Mass Transfer
,
131
, pp.
424
431
.10.1016/j.ijheatmasstransfer.2018.11.050
39.
Kudo
,
K.
,
Li
,
B.
, and
Kuroda
,
A.
,
1995
, “
Analysis on Radiative Energy Transfer Through Fibrous Layer Considering Fibrous Orientation
,”
ASME HTD
,
315
, pp.
37
43
.
40.
Li
,
B.
,
Kudo
,
K.
, and
Kuroda
,
A.
,
1996
, “
Study on Radiative Heat Transfer Through Fibrous Layer
,”
Proceeding of Third KSME-JSME Thermal Engineering Conference
, Vol.
III
,
KyongJu, Korea
, Oct. 20–23, pp.
279
284
.
41.
Argento
,
C.
, and
Bouvard
,
D.
,
1996
, “
A Ray Tracing Method for Evaluating the Radiative Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
39
(
15
), pp.
3175
3180
.10.1016/0017-9310(95)00403-3
42.
Tancrez
,
M.
, and
Taine
,
J.
,
2004
, “
Direct Identification of Absorption and Scattering Coefficients and Phase Function of a Porous Medium by a Monte Carlo Technique
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
373
383
.10.1016/S0017-9310(03)00146-7
43.
Zhao
,
Y.
, and
Tang
,
G.
,
2016
, “
Monte Carlo Study on Extinction Coefficient of Silicon Carbide Porous Media Used for Solar Receiver
,”
Int. J Heat Mass Transfer
,
92
, pp.
1061
1065
.10.1016/j.ijheatmasstransfer.2015.08.105
44.
Sans
,
M.
,
Farges
,
O.
,
Schick
,
V.
,
Moyne
,
C.
, and
Parent
,
G.
,
2019
, “
Modeling the Flash Method by Using a Conducto-Radiative Monte Carlo Algorithm: Application to Porous Media
,”
Proceedings if the Ninth ICHMT International Symposium RAD
, Vol.
19
, Athens, Greece, June 3–7, pp.
319
326
.
45.
Dauchet
,
J.
,
Blanco
,
S.
,
Cornet
,
J.-F.
,
El-Hafi
,
M.
,
Eymet
,
V.
, and
Fournier
,
R.
,
2013
, “
The Practice of Recent Radiative Transfer Monte Carlo Advances and Its Contribution to the Field of Micro-Organisms Cultivation in Photobioreactors
,”
J. Quant. Spectrosc. Radiat. Transfer
,
128
, pp.
52
59
.10.1016/j.jqsrt.2012.07.004
46.
Marston
,
A. J.
,
Daun
,
K. J.
, and
Collins
,
M. R.
,
2011
, “
Geometric Optimization of Radiant Enclosures Containing Specularly-Reflecting Surfaces Through Quasi-Monte Carlo Simulation
,”
Heat Transfer A
,
59
(
2
), pp.
81
97
.10.1080/10407782.2011.540960
47.
Zaworski
,
J.
,
Welty
,
J. R.
,
Palmer
,
B. J.
, and
Drost
,
M. K.
,
1996
, “
Comparison of Experiment With Monte Carlo Simulations on a Reflective Gap Using a Detailed Surface Properties Model
,”
ASME J. Heat Transfer
,
118
(
2
), pp.
388
393
.10.1115/1.2825856
48.
Mochida
,
A.
,
Kudo
,
K.
,
Mizutani
,
Y.
,
Hattori
,
M.
, and
Nakamura
,
Y.
,
1995
, “
Transient Heat Transfer Analysis in Vacuum Furnace by Radiant Tube Burners
,”
Proceeding of RAN 95: International Symposium On Advanced Energy Conversion Systems, Society of Chemical Engineers-Japan
,
Nagoya
, Dec.
49.
Tamura
,
M.
,
Nakamura
,
Y.
,
Mochida
,
A.
, and
Kudo
,
K.
,
1995
, “
Heat Transfer Analysis in a Radiant Tube Burner
,”
Proceedings of International Symposium on Advanced Energy Conventional System and Related Technologies: RAN95
,
Japan Society Chemical Engineers
,
Nagoya, Japan
, Dec. 4–6, pp.
1175
180
.
50.
Kudo
,
K.
,
Taniguchi
,
H.
,
Kuroda
,
A.
,
Otaka
,
M.
,
Ushijima
,
T.
, and
Obata
,
M.
,
1995
, “
Analysis on Radiative Characteristics of High-Temperature Nongray-Gas Jet
,”
Proc. 1995 ASME/JSME Thermal Engineering Joint Conference, Vol. 3, L. S. Fletcher and T. Aihara, eds., ASME, New York, pp. 273–278.
51.
Ertürk
,
H.
,
Arınç
,
F.
, and
Selçuk
,
N.
,
1997
, “
Accuracy of Monte Carlo Method Re-Examined on a Box-Shaped Furnace Problem
,”
Proceeding of ICHMT Radiative Transfer II Conference
,
M. P.
Mengüç
, ed.,
Begell House
,
New York
.
52.
Snegirev
,
A. Y.
,
2004
, “
Statistical Modeling of Thermal Radiation Transfer in Buoyant Turbulent Diffusion Flames
,”
Combust. Flame
,
136
(
1–2
), pp.
51
71
.10.1016/j.combustflame.2003.09.005
53.
Joseph
,
D.
,
Perez
,
P.
,
El Hafi
,
M.
, and
Cuenot
,
B.
,
2009
, “
Discrete Ordinates and Monte Carlo Methods for Radiative Transfer Simulation Applied to Computational Fluid Mechanics Combustion Modeling
,”
ASME J. Heat Transfer
,
131
(
5
), p.
052701
.10.1115/1.3013832
54.
Zhao
,
X. Y.
,
Haworth
,
D. C.
,
Ren
,
T.
, and
Modest
,
M. F.
,
2013
, “
A Transported Probability Density Function/Photon Monte Carlo Method for High-Temperature Oxy–Natural Gas Combustion With Spectral Gas and Wall Radiation
,”
Comb. Theory Modell.
,
17
(
2
), pp.
354
381
.10.1080/13647830.2013.766365
55.
Farmer
,
J. A.
, and
Roy
,
S. P.
,
2019
, “
A Photon Monte Carlo Solver Utilizing a Low Discrepancy Sequence for Thermal Radiation in Combustion Systems
,”
Proceedings of Ninth International Symposium on Radiative Transfer, RAD-19
,
Athens, Greece
, June 3–7, Paper No. CS01.
56.
Feldick
,
A.
, and
Modest
,
M. F.
,
2011
, “
Importance Sampling on Monte Carlo Ray Tracing Solutions Applied to Radiation in Hypersonic Entry Flows
,”
ASME Paper No. AJTEC2011-44487.
57.
Hsu
,
P.-F.
, and
Farmer
,
J. T.
,
1995
, “
Benchmark Solutions of Radiative Heat Transfer Within Nonhomogeneous Participating Media Using the Monte Carlo and YIX Methods
,”
Proceedings of National Heat Transfer Conference
, Vol.
13
, HTD-Vol. 315,
Portland, OR
, Aug. 5–9, pp.
29
36
.
58.
Henson
,
J. C.
,
Malasekekera
,
W. M. G.
, and
Dent
,
J. C.
,
1997
, “
Comparison of the Discrete Transfer and Monte Carlo Methods for Radiative Heat Transfer in Three-Dimensional, Nonhomogeneous Participating Media
,”
Heat Transfer A
,
32
(
1
), pp.
19
36
.10.1080/10407789708913877
59.
Hsu
,
P.-F.
, and
Tan
,
Y.
,
1996
, “
Recent Benchmarkings of Radiative Transfer Within Nonhomogeneous Participating Media and the Improved YIX Method
,”
Radiative Transfer I- Proceedings of First International Symposium on Radiation Transfer
,
Begell House, New York
, Aug. 13–18, pp.
107
126
.
60.
Cherkaoui
,
M.
,
Dufresne
,
J.-L.
,
Fournier
,
R.
,
Grandpeix
,
J.-Y.
, and
Lahellec
,
A.
,
1996
, “
Monte Carlo Simulation of Radiation in Gases With a Narrow-Band Model and a Net-Exchange Formulation
,”
ASME J. Heat Transfer-Transfer
,
118
(
2
), pp.
401
407
.10.1115/1.2825858
61.
Wang
,
A.
, and
Modest
,
M. F.
,
2007
, “
Spectral Monte Carlo Models for Nongray Radiation Analyses in Inhomogeneous Participating Media
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3877
3889
.10.1016/j.ijheatmasstransfer.2007.02.018
62.
Wang
,
L.
,
Yang
,
J.
,
Modest
,
M. F.
, and
Haworth
,
D. C.
,
2007
, “
Application of the Full-Spectrum k-Distribution Method to Photon Monte Carlo Solvers
,”
J. Quant. Spectrosc. Radiat. Transfer
,
104
(
2
), pp.
297
304
.10.1016/j.jqsrt.2006.07.024
63.
Maurente
,
A.
,
Vielmo
,
H. A.
, and
França
,
F. H. R.
,
2007
, “
A Monte Carlo Implementation to Solve Radiation Heat Transfer in Non-Uniform Media With Spectrally Dependent Properties
,”
J. Quant. Spectrosc. Radiat. Transfer
,
108
(
2
), pp.
295
307
.10.1016/j.jqsrt.2007.04.002
64.
Ren
,
T.
, and
Modest
,
M. F.
,
2013
, “
A Hybrid Wavenumber Selection Scheme for Line-by-Line Photon Monte Carlo Simulations in High-Temperature Gases
,”
ASME J. Heat Transfer
,
135
(
8
), p.
084501
.10.1115/1.4024385
65.
Maurente
,
A.
, and
França
,
F. H. R.
,
2015
, “
A Multi-Spectral Energy Bundle Method for Efficient Monte Carlo Radiation Heat Transfer Computations in Participating Media
,”
Int. J. Heat Mass Transfer
,
90
, pp.
351
357
.10.1016/j.ijheatmasstransfer.2015.06.067
66.
Galtier
,
M.
,
Blanco
,
S.
,
Dauchet
,
J.
,
El Hafi
,
M.
,
Eymet
,
V.
,
Fournier
,
R.
,
Roger
,
M.
,
Spiesser
,
C.
, and
Terrée
,
G.
,
2016
, “
Radiative Transfer and Spectroscopic Databases: A Line-Sampling Monte Carlo Approach
,”
J. Quant. Spectrosc. Radiat. Transfer
,
172
, pp.
83
97
.10.1016/j.jqsrt.2015.10.016
67.
Fraga
,
G. C.
, and
França
,
F. H. R.
,
2020
, “
Development and Validation of a Monte Carlo Solver Coupled to Different Spectral Models for Radiative Transfer in Participating Media
,”
ENCIT 2020, 18th Brazilian Congress of Thermal Science and Engineering
, Nov. 16–20, Paper ENC-2020-0267.
68.
Howell
,
J. R.
,
2017
, “
The Effect of Bifurcation on Numerical Calculation of Conjugate Heat Transfer With Radiation
,”
J. Quant. Spectrosc. Radiat. Transfer
,
196
, pp.
242
245
.10.1016/j.jqsrt.2017.04.018
69.
Roger
,
M.
,
Blanco
,
S.
,
El Hafi
,
M.
, and
Fournier
,
R.
,
2005
, “
Monte Carlo Estimates of Domain-Deformation Sensitivities
,”
Phys. Rev. Lett.
,
95
, p.
180601
.10.1103/PhysRevLett.95.180601
70.
Delatorre
,
J.
,
Rolland
,
J. Y.
,
Roger
,
M.
,
El Hafi
,
M.
,
Fournier
,
R.
,
Blanco
,
S.
, and
Bezian
,
J. J.
,
2009
, “
Monte Carlo Estimations of Domain-Deformation Sensitivities for Optimal Geometric Design
,”
Proceedings of the Eurotherm83-Computational Thermal Radiation in Participating Media III
,
Cascais, Portugal
, Apr.
11
13
.
71.
Lapeyre
,
P.
,
Blanco
,
S.
,
Caliot
,
C.
,
Dauchet
,
J.
,
El Hafi
,
M.
,
Fournier
,
R.
,
Farges
,
O.
,
Gautrais
,
J.
, and
Roger
,
M.
,
2020
, “
Monte Carlo and Sensitivity Transport Models for Domain Deformation
,”
J. Quant. Spectrosc. Radiat. Transfer
,
251
, p.
107022
J.10.1016/j.jqsrt.2020.107022
72.
Taylor
,
R. P.
,
Luck
,
R.
,
Hodge
,
B. K.
, and
Steele
,
W. G.
,
1995
, “
Uncertainty Analysis of Diffuse-Gray Radiation Enclosure Problems
,”
J. Thermophys. Heat Transfer
,
9
(
1
), pp.
63
69
.10.2514/3.629
73.
Loehrke
,
R. I.
,
Dolaghan
,
J. S.
, and
Burns
,
P. J.
,
1995
, “
Smoothing Monte Carlo Exchange Factors
,”
ASME J. Heat Transfer
,
117
(
2
), pp.
524
526
.10.1115/1.2822557
74.
Chen
,
G.
, and
Boyd
,
I. D.
,
1996
, “
Statistical Error Analysis for the Direct Simulation Monte Carlo Method
,”
J. Comp. Phys.
,
126
(
2
), pp.
434
448
.10.1006/jcph.1996.0148
75.
Planas Almazon
,
P.
,
1997
, “
Accuracy of Monte Carlo Ray-Tracing Thermal Radiation Calculations: A Practical Discussion
,”
Proceedings of Sixth European Symposium on Space Environmental Control Systems
,
Noordwijk, The Netherlands
, May 20–22, pp.
579
591
.s
76.
Sanchez
,
M. C.
,
Mahan
,
J. R.
,
Ayala
,
E. A.
, and
Priestley
,
K. J.
,
1999
, “
Tools for Predicting Uncertainty and Confidence Intervals in Radiometric Data Products
,”
SPIE Paper No. 3870.
77.
Sanchez
,
M. C.
,
Nevarez
,
F. J.
,
Mahan
,
J. R.
, and
Priestley
,
K. J.
,
2001
, “
Uncertainty and Confidence Intervals in Optical Design Using the Monte Carlo Ray-Trace Method
,” SPIE Paper No. 4169.
78.
Sanchez
,
M. C.
,
Mahan
,
J. R.
,
Nevarez
,
F. J.
, and
Sorenson
,
I. J.
,
2001
, “
Bounding Uncertainty in Monte Carlo Ray-Trace Models
,”
SPIE Proc.
,
4540
.10.1117/12.450679
79.
Sanchez
,
M. C.
,
2002
, “
Uncertainty and Confidence Intervals of the Monte Carlo Ray-Trace Method in Radiation Transfer
,” Ph.D. dissertation,
Department of Mechanical Engineering
,
VPI, Blacksburg, VA
.
80.
de Lataillade
,
A.
,
Blanco
,
S.
,
Clergent
,
Y.
,
Dufresne
,
J. L.
,
El Hafi
,
M.
, and
Fournier
,
R.
,
2002
, “
Monte Carlo Method and Sensitivity Estimations
,”
J. Quant. Spectrosc. Radiat. Transfer
,
75
(
5
), pp.
529
538
.10.1016/S0022-4073(02)00027-4
81.
Daun
,
K. J.
,
Howell
,
J. R.
, and
Morton
,
D. P.
,
2005
, “
Smoothing Monte Carlo Exchange Factors Through Constrained Maximum Likelihood Estimation
,”
ASME J. Heat Transfer
,
127
(
10
), pp.
1124
1128
.10.1115/1.2035111
82.
Pincus
,
R.
, and
Evans
,
F. E.
,
2009
, “
Computational Cost and Accuracy in Calculating Three-Dimensional Radiative Transfer: Results for New Implementations of Monte Carlo and SHDOM
,”
J. Atmos. Sci.
,
66
(
10
), pp.
3131
3146
.10.1175/2009JAS3137.1
83.
Yarahmadi
,
M.
,
Robert Mahan
,
J.
, and
Priestley
,
K. J.
,
2019
, “
Uncertainty Analysis and Experimental Design in the Monte Carlo Ray-Trace Environment
,”
ASME J. Heat Transfer
,
141
(
3
), p.
032701
.10.1115/1.4042365
84.
Liu
,
H.
,
Zhou
,
H.
,
Wang
,
D.
, and
Han
,
Y.
,
2020
, “
Performance Comparison of Two Monte Carlo Ray-Tracing Methods for Calculating Radiative Heat Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
256
, p.
107305
.10.1016/j.jqsrt.2020.107305
85.
de Lataillade
,
A.
,
Dufresne
,
J. L.
,
El Hafi
,
M.
,
Eymet
,
V.
, and
Fournier
,
R.
,
2002
, “
A Net Exchange Monte Carlo Approach to Radiation in Optically Thick Systems
,”
J. Quant. Spectrosc. Radiat. Transfer
,
74
(
5
), pp.
563
584
.10.1016/S0022-4073(01)00272-2
86.
Farmer
,
J. T.
,
1995
, “
Improved Algorithms for Monte Carlo Analysis of Radiative Heat Transfer in Complex Participating Medium
,” Ph.D. dissertation, Department of Mechanical Engineering,
The University of Texas at Austin
,
Austin, TX
.
87.
Evans
,
T. M.
,
Urbatsch
,
T. J.
,
Lichtenstein
,
H.
, and
Morel
,
J. E.
,
2003
, “
A Residual Monte Carlo Method for Discrete Thermal Radiative Diffusion
,”
J. Comput. Phys.
,
189
(
2
), pp.
539
556
.10.1016/S0021-9991(03)00233-X
88.
Eymet
,
V.
,
Fournier
,
R.
,
Blanco
,
S.
, and
Dufresne
,
J. L.
,
2005
, “
A Boundary-Based Net-Exchange Monte Carlo Method for Absorbing and Scattering Thick Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
91
(
1
), pp.
27
46
.10.1016/j.jqsrt.2004.05.049
89.
Zhou
,
H.
, and
Cheng
,
Q.
,
2004
, “
The DRESOR Method for the Solution of the Radiative Transfer Equation in Gray Plane-Parallel Media
,”
Fourth International Symposium on Radiative Transfer
,
Istanbul, June 20–25.
90.
Wang
,
Z.
,
Cheng
,
Q.
,
Wang
,
G.
, and
Zhou
,
H.
,
2011
, “
The DRESOR Method for Radiative Heat Transfer in a One-Dimensional Medium With Variable Refractive Index
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
18
), pp.
2835
2845
.10.1016/j.jqsrt.2011.08.013
91.
Wang
,
Z.
,
Cheng
,
Q.
, and
Zhou
,
H.
,
2013
, “
The DRESOR Method for Transient Radiation Transfer in 1-D Graded Index Medium With Pulse Irradiation
,”
Int. J Therm. Sci.
,
68
, pp.
127
135
.10.1016/j.ijthermalsci.2013.01.006
92.
Frankel
,
A.
, and
Iaccarino
,
G.
,
2017
, “
Efficient Control Variates for Uncertainty Quantification of Radiation Transport
,”
J. Quant. Spectrosc. Radiat. Transfer
,
189
, pp.
398
406
.10.1016/j.jqsrt.2016.12.033
93.
Gentle
,
J. E.
,
2003
,
Random Number Generation and Monte Carlo Methods
, 2nd ed.,
Springer-Verlag
,
New York
.
94.
Walker
,
J.
,
2001
, “
HotBits: Genuine Random Numbers, Generated by Radioactive Decay
,”
Fourmilab Switzerland
, accessed Apr. 15, 2021, http://www.fourmilab.ch/hotbits/
95.
Kanter
,
I.
,
Aviad
,
Y.
,
Reidler
,
I.
,
Cohen
,
E.
, and
Rosenbluh
,
M.
,
2010
, “
An Optical Ultrafast Random Bit Generator
,”
Nat. Photonics
,
4
(
1
), pp.
58
61
.10.1038/nphoton.2009.235
96.
Haahr
,
M.
,
2020
, “
RANDOM.ORG: True Random Number Service
,” accessed Feb. 20, 2020, https://www.random.org
97.
Farmer
,
J. A.
, and
Roy
,
S. P.
,
2020
, “
A Quasi-Monte Carlo Solver for Thermal Radiation in Participating Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
242
, p.
106753
.10.1016/j.jqsrt.2019.106753
98.
Case
,
K. M.
,
1957
, “
Transfer Problems and the Reciprocity Principle
,”
Rev. Mod. Phys.
,
29
(
4
), pp.
651
663
.10.1103/RevModPhys.29.651
99.
Ambirajan
,
A.
, and
Look
,
D. C.
, Jr.
,
1996
, “
A Backward Monte Carlo Estimator for the Multiple Scattering of a Narrow Light Beam
,”
J. Quant. Spectrosc. Radiat. Transfer
,
56
(
3
), pp.
317
336
.10.1016/0022-4073(96)84523-7
100.
Tessé
,
L.
,
Dupoirieux
,
F.
,
Zamuner
,
B.
, and
Taine
,
J.
,
2002
, “
Radiative Transfer in Real Gases Using Reciprocal and Forward Monte Carlo Methods and Correlated-k Approach
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2797
2814
.10.1016/S0017-9310(02)00009-1
101.
Modest
,
M. F.
,
2003
, “
Backward Monte Carlo Simulations in Radiative Heat Problems With Arbitrary Radiation Sources, Including Small Collimated Beams, Point Sources, Etc., in Media of Arbitrary Optical Thickness
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
57
62
.10.1115/1.1518491
102.
Lu
,
X.
, and
Hsu
,
P.-F.
,
2004
, “
Reverse Monte Carlo Method for Transient Radiative Transfer in Participating Media
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
621
627
.10.1115/1.1773587
103.
Li
,
B. X.
,
Yu
,
X. J.
, and
Liu
,
L. H.
,
2005
, “
Backward Monte Carlo Simulation for Apparent Directional Emissivity of Non-Isothermal Semitransparent Slab
,”
J. Quant. Spectrosc. Radiat. Transfer
,
91
(
2
), pp.
173
179
.10.1016/j.jqsrt.2004.05.055
104.
Lu
,
X.
, and
Hsu
,
P.-F.
,
2005
, “
Reverse Monte Carlo Simulations of Light Pulse Propagation in Nonhomogeneous Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
93
(
1–3
), pp.
349
367
.10.1016/j.jqsrt.2004.08.029
105.
Dupoirieux
,
F.
,
Tessé
,
L.
,
Avila
,
S.
, and
Taine
,
J.
,
2006
, “
An Optimized Reciprocity Monte Carlo Method for the Calculation of Radiative Transfer in Media of Various Optical Thicknesses
,”
Int. J. Heat Mass Transfer
,
49
(
7–8
), pp.
1310
1319
.10.1016/j.ijheatmasstransfer.2005.10.009
106.
Ertürk
,
H.
,
Ezekoye
,
O. A.
, and
Howell
,
J. R.
,
2008
, “
Reverse Monte Carlo Modeling of Signal Transport in Light-Pipe Radiation Thermometers
,”
ASME Paper No. HT2008–56180.
107.
Ma
,
C. Y.
,
Zhao
,
J. M.
,
Liu
,
L. H.
,
Zhang
,
L.
,
Li
,
X. C.
, and
Jiang
,
B. C.
,
2016
, “
GPU-Accelerated Inverse Identification of Radiative Properties of Particle Suspensions in Liquid by Monte Carlo
,”
J. Quant. Spectrosc. Radiat. Transfer
,
172
, pp.
146
159
.10.1016/j.jqsrt.2015.08.002
108.
Wei
,
L.-Y.
,
Qi
,
H.
,
Niu
,
Z.-H.
,
Ren
,
Y.-T.
, and
Ruan
,
L.-M.
,
2019
, “
Reverse Monte Carlo Coupled With Runge-Kutta Ray Tracing Method for Radiative Transfer in Graded-Index Media
,”
Infrared Phys. Tech.
,
99
, pp.
5
13
.10.1016/j.infrared.2019.04.002
109.
Oguma
,
M.
, and
Howell
,
J. R.
,
1995
, “
Solution of Two-Dimensional Blackbody Inverse Radiation by an Inverse Monte Carlo Method
,”
Proc. 1995 ASME/JSME Thermal Engineering Joint Conference, L. S. Fletcher and T. Aihara, eds., ASME, New York.
110.
França
,
F.
,
Morales
,
J. C.
,
Oguma
,
M.
, and
Howell
,
J. R.
,
1997
, “
Inverse Design of Engineering Systems Dominated by Radiative Transfer
,”
Radiative Transfer II:-Proceedings of Second International Symposium on Radiative Heat Transfer
,
Kusadasi, Turkey
,
M.
Pinar Mengüç
, ed., Begell House, New York.
111.
França
,
F.
,
Morales
,
J. C.
,
Oguma
,
M.
, and
Howell
,
J. R.
,
1998
, “
Inverse Design of Thermal Systems With Participating Radiating Media
,”
Proceedings of 13th International Heat Transfer Conference
, Vol.
1
,
KyongJu, South Korea
, Aug.
23
28
.
112.
Daun
,
K. J.
,
Thomson
,
K. A.
, and
Liu
,
F.
,
2008
, “
Simulation of Laser-Induced Incandescence Measurements in an Anisotropically-Scattering Aerosol Through Backward Monte Carlo
,”
ASME J. Heat Transfer
,
130
(
11
), p.
112701
.10.1115/1.2955468
113.
Mosavati
,
B.
,
Mosavati
,
M.
, and
Kowsary
,
F.
,
2013
, “
Solution of Radiative Inverse Boundary Design Problem in a Combined Radiating-Free Convecting Furnace
,”
Int. Comm. Heat Mass Transfer
,
45
, pp.
130
136
.10.1016/j.icheatmasstransfer.2013.04.011
114.
Mosavati
,
M.
,
Kowsary
,
F.
, and
Mosavati
,
B.
,
2013
, “
A Novel, Non-Iterative Inverse Boundary Design Regularized Solution Technique Using the Backward Monte Carlo Method
,”
ASME J. Heat Transfer
,
135
(
4
), p.
042701
.10.1115/1.4022994
115.
Kamkari
,
B.
,
Mahjoud
,
S.
, and
Darvishvand
,
L.
,
2015
, “
A Hybrid Approach Based on the Genetic Algorithm and Monte Carlo Method to Optimization 3-D Radiant Furnaces
,”
Int. J. Adv. Des. Manuf. Technol.
,
8
(
30
), pp.
67
75
.
116.
Mosavati
,
B.
,
Mosavati
,
M.
, and
Kowsary
,
F.
,
2016
, “
Inverse Boundary Design Solution in a Combined Radiating-Free Convecting Furnace Filled With Participating Medium Containing Specularly Reflecting Walls
,”
Int. Comm. Heat Mass Transfer
,
76
, pp.
69
76
.10.1016/j.icheatmasstransfer.2016.04.029
117.
Zhang
,
Y. F.
,
Gicquel
,
O.
, and
Taine
,
J.
,
2012
, “
Optimized Emission-Based Reciprocity Monte Carlo Method to Speed Up Computation in Complex Systems
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
8172
8177
.10.1016/j.ijheatmasstransfer.2012.05.028
118.
Villefranque
,
N.
,
Fournier
,
R.
,
Couvreux
,
F.
,
Blanco
,
S.
,
Cornet
,
C.
,
Eymet
,
V.
,
Forest
,
V.
, and
Tregan
,
J.-M.
,
2019
, “
A Path-Tracing Monte Carlo Library for 3D Radiative Transfer in Highly Resolved Cloudy Atmospheres
,”
J. Adv. Model. Earth Syst.
,
11
(
8
), pp.
2449
2473
.10.1029/2018MS001602
119.
Klinger
,
C.
, and
Mayer
,
B.
,
2016
, “
The Neighboring Column Approximation (NCA)—A Fast Approach for the Calculation of 3D Thermal Heating Rates in Cloud Resolving Models
,”
J. Quant. Spectrosc. Radiat. Transfer
,
168
, pp.
17
28
.10.1016/j.jqsrt.2015.08.020
120.
Jönsson
,
J.
, and
Berrocal
,
E.
,
2020
, “
Multi-Scattering Software: Part I: Online Accelerated Monte Carlo Simulation of Light Transport Through Scattering Media
,”
Opt. Exp.
,
28
(
25
), pp.
37612
37638
.10.1364/OE.404005
121.
Cunsolo
,
S.
,
Baillis
,
D.
, and
Bianco
,
N.
,
2019
, “
Improved Monte Carlo Methods for Computational Modelling of Thermal Radiation Applied to Porous Cellular Materials
,”
Int. J. Therm. Sci.
,
137
, pp.
161
179
.10.1016/j.ijthermalsci.2018.11.011
122.
Jacques
,
S. L.
, and
Wang
,
L.
,
1995
, “
Monte Carlo Modeling of Light Transport in Tissues
,”
Optical-Thermal Response of Laser-Irradiated Tissue
,
A. J.
Welch
, and
M. J. C.
van Gemert
, eds.,
Springer
,
New York
, pp.
73
100
.
123.
Yi
,
H. L.
,
Wang
,
C. H.
, and
Tan
,
H. P.
,
2014
, “
Transient Radiative Transfer in a Complex Refracting Medium by a Modified Monte Carlo Simulation
,”
Int. J. Heat Mass Transfer
,
79
, pp.
437
449
.10.1016/j.ijheatmasstransfer.2014.08.031
124.
Wang
,
C. H.
,
Zhang
,
Y.
,
Yi
,
H. L.
, and
Tan
,
H. P.
,
2016
, “
Transient Radiative Transfer in Two-Dimensional Graded Index Medium by Monte Carlo Method Combined With the Time Shift and Superposition Principle
,”
Num. Heat Transfer Appl.
,
69
(
6
), pp.
1
15
.10.1080/10407782.2015.1090236
125.
Shi
,
G.-D.
,
Huang
,
Y.
, and
Zhu
,
K.-Y.
,
2016
, “
Thermal Emissions of a Two-Dimensional Graded-Index Medium Solved Using a High-Precision Numerical Ray-Tracing Technique
,”
J. Quant. Spectrosc. Radiat. Transfer
,
176
, pp.
87
96
.10.1016/j.jqsrt.2016.02.030
126.
Tseng
,
H.-Y.
,
Hong
,
Y.-B.
,
Wu
,
C.-Y.
,
Hong
,
D.-C.
, and
Chen
,
Y.-C.
,
2017
, “
Monte Carlo Simulation of Radiative Transfer in a Medium With Varying Refractive Index Specified at Discrete Points
,”
Appl. Math. Modell.
,
48
, pp.
870
884
.10.1016/j.apm.2017.02.049
127.
Hosseini Sarvari
,
S. M.
,
2018
, “
Multi-Grid Monte Carlo Method for Radiative Transfer in Multi-Dimensional Graded Index Media With Diffuse-Specular-Gray Boundaries
,”
J. Quant. Spectrosc. Radiat. Transfer
,
219
, pp.
61
73
.10.1016/j.jqsrt.2018.08.004
128.
Vaillon
,
V.
,
Wong
,
B. T.
, and
Mengüç
,
M. P.
,
2004
, “
Polarized Radiative Transfer in a Particle Laden Transparent Medium Via Monte Carlo Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
84
(
4
), pp.
383
394
.10.1016/S0022-4073(03)00257-7
129.
Swamy
,
J. N.
,
Crofcheck
,
C.
, and
Mengüç
,
M. P.
,
2007
, “
A Monte Carlo Ray Tracing Study of the Polarized Light Propagation in Liquid Foams
,”
J. Quant. Spectrosc. Radiat. Transfer
,
101
(
2
), pp.
527
539
.10.1016/j.jqsrt.2006.07.022
130.
Gay
,
B.
,
Vaillon
,
R.
, and
Mengüç
,
M. P.
,
2010
, “
Polarization Imaging of Multiply-Scattered Radiation Based on Integral-Vector Monte Carlo Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
2
), pp.
287
294
.10.1016/j.jqsrt.2009.06.010
131.
Zhao
,
J. M.
,
Tan
,
J. Y.
, and
Liu
,
L. H.
,
2015
, “
Monte Carlo Method for Polarized Radiative Transfer in Gradient-Index Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
152
, pp.
114
126
.10.1016/j.jqsrt.2014.11.005
132.
Burns
,
P. J.
, and
Pryor
,
D. V.
,
1998
, “
Surface Radiative Transport at Large Scale Via Monte Carlo
,”
Annual Review of Heat Transfer
,
C.-L.
Tien
, ed., Vol.
IX
, Chap. 7,
Begell House
,
New York
, pp.
79
158
.10.1615/AnnualRevHeatTransfer.v9.40
133.
Zeeb
,
C. N.
, and
Burns
,
P. J.
,
1999
, “
Performance Enhancements of Monte Carlo Particle Tracing Algorithms for Large, Arbitrary Geometries
,”
ASME Paper No. NHTC99-31.
134.
Wong
,
B. T.
, and
Mengüç
,
M. P.
,
2004
, “
Monte Carlo Methods in Radiative Transfer and Electron Beam Processing
,”
J. Quant. Spectrosc. Radiat. Transfer
,
84
(
4
), pp.
437
450
.10.1016/S0022-4073(03)00261-9
135.
Qu
,
Y.
,
Howell
,
J. R.
, and
Ezekoye
,
O. A.
,
2007
, “
Monte Carlo Modeling of a Light-Pipe Radiation Thermometer
,”
IEEE Trans. Semicond. Manuf.
,
20
(
1
), pp.
39
50
.10.1109/TSM.2007.890773
136.
Wong
,
B. T.
,
Francoeur
,
M.
, and
Mengüç
,
M. P.
,
2011
, “
A Monte Carlo Simulation for Phonon Transport Within Silicon Structures at Nanoscales With Heat Generation
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1825
1838
.10.1016/j.ijheatmasstransfer.2010.10.039
137.
Wong
,
B. T.
,
Francoeur
,
M.
,
Bong
,
V. N.-S.
, and
Mengüç
,
M. P.
,
2014
, “
Coupling of Near-Field Thermal Radiative Heating and Phonon Monte Carlo Simulation: Assessment of Temperature Gradient in Doped Silicon Thin Film
,”
J. Quant. Spectrosc. Radiat. Transfer
,
143
, pp.
46
55
.10.1016/j.jqsrt.2013.09.002
138.
Caliot
,
C.
,
Blanco
,
S.
,
Coustet
,
C.
,
El Hafi
,
M.
,
Eymet
,
V.
,
Forest
,
V.
,
Fournier
,
R.
, and
Piaud
,
B.
,
2018
, “
Combined Conductive-Radiative Heat Transfer Analysis in Complex Geometry Using the Monte Carlo Method
,”
Eurotherm Seminar 110—Computational Thermal Radiation in Participating Media, VI
,
Cascais, Portugal
, Apr. 11–13. https://www.researchgate.net/publication/325046443_COMBINED_CONDUCTIVE-RADIATIVE_HEAT_TRANSFER_ANALYSIS_IN_COMPLEX_GEOMETRY_USING_THE_MONTE_CARLO_METHOD
139.
Ibarrat
,
L.
,
Caliot
,
C.
,
Blanco
,
S.
,
El Hafi
,
M.
,
Fournier
,
R.
,
Blanco
,
S.
,
Dutour
,
S.
,
Duchet
,
J.
,
Tregan
,
J.-M.
,
Eymet
,
V.
, and
Forest
,
V.
,
2018
, “
Combined Conductive-Convective-Radiative Heat Transfer in Complex Geometry Using the Monte Carlo Method: Application to Solar Receivers
,”
Proceedings of 16th International Heat Transfer Conference, IHTC-16
,
Beijing, China
, Aug. 10–15, Paper No. IHTC-16.
140.
Kovtanyuk
,
A. E.
,
Botkin
,
N. D.
, and
Hoffmann
,
K.-H.
,
2012
, “
Numerical Simulations of a Coupled Radiative–Conductive Heat Transfer Model Using a Modified Monte Carlo Method
,”
Int. J Heat Mass Transfer
,
55
(
4
), pp.
649
654
.10.1016/j.ijheatmasstransfer.2011.10.045
141.
Fournier
,
R.
,
Blanco
,
S.
,
Eymet
,
V.
,
El Hafi
,
M.
, and
Spiesser
,
C.
,
2016
, “
Radiative, Conductive and Convective Heat Transfers in a Single Monte Carlo Algorithm
,”
J. Phys. Conf. Ser.
,
676
(
1
), p.
012007
.10.1088/1742-6596/676/1/012007
142.
Tregan
,
J.-M.
,
Blanco
,
S.
,
Caliot
,
C.
,
Dauchet
,
J.
,
El Hafi
,
M.
,
Eymet
,
V.
,
Fournier
,
R.
,
Farges
,
O.
,
Gautrais
,
J.
, and
Roger
,
M.
,
2019
, “
Transient Conducto-Radiative Heat Transfer in a Single Monte Carlo Algorithm: Handling the Nonlinearity
,”
Proceeding of Ninth International Symposium on Radiative Transfer, RAD-19
,
Athens, Greece
, June
3
7
.
143.
Li
,
Z. H.
,
Li
,
X. L.
,
Xia
,
X. L.
, and
Sun
,
C.
,
2020
, “
A Hybrid Strategy for Solving Radiation-Conduction in Irregular Geometries Filled With Gray Semitransparent Medium Using Monte Carlo Method Combined With Blocked-Off and Embedded Boundary Treatments
,”
Numer. Heat Transfer, Part B: Fundam.
,
77
(
1
), pp.
22
41
.10.1080/10407790.2019.1690368
144.
Sit
,
A.
, and
Talukdar
,
P.
,
2020
, “
A Fully Parallel Coupled Monte Carlo–Finite Volume Method for Coupled Conduction–Radiation Heat Transfer in Multidimensional Geometries
,”
Comp. Therm. Sci.
,
12
(
6
), pp.
509
527
.10.1615/ComputThermalScien.2020033494
145.
Malalasekera
,
W. M. G.
, and
James
,
E. H.
,
1996
, “
Calculation of Radiative Heat Transfer in Three-Dimensional Complex Geometries
,”
ASME J Heat Trans.
,
118
(
1
), pp.
225
228
.
146.
Antoniak
,
Z. I.
,
Palmer
,
B. J.
,
Drost
,
M. K.
, and
Welty
,
J. R.
,
1996
, “
Parametric Study of Radiative Heat Transfer in Arrays of Fixed Discrete Surfaces
,”
ASME J. Heat Transfer
,
118
(
1
), pp.
228
230
.10.1115/1.2824046
147.
Palmer
,
B. J.
,
Drost
,
M. K.
, and
Welty
,
J. R.
,
1996
, “
Monte Carlo Simulation of Radiative Heat Transfer in Arrays of Fixed Discrete Surfaces Using Cell-to-Cell Photon Transport
,”
Int. J. Heat Mass Transfer
,
39
(
13
), pp.
2811
2819
.10.1016/0017-9310(95)00340-1
148.
Baek
,
S. W.
,
Byun
,
D. Y.
, and
Kang
,
S. J.
,
2000
, “
The Combined Monte Carlo and Finite Volume Method for Radiation in a Two-Dimensional Irregular Geometry
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2337
2344
.10.1016/S0017-9310(99)00288-4
149.
Byun
,
D.
,
Lee
,
C.
, and
Baek
,
S. W.
,
2004
, “
Radiative Heat Transfer in Discretely Heated Irregular Geometry With an Absorbing, Emitting, and Anisotopically Scattering Medium Using Combined Monte Carlo and Finite Volume Method
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4195
4203
.10.1016/j.ijheatmasstransfer.2004.05.008
150.
Naeimi
,
H.
, and
Kowsary
,
F.
,
2017
, “
An Optimized and Accurate Monte Carlo Method to Simulate 3D Complex Radiative Enclosures
,”
Int. Comms. Heat Mass Transfer
,
84
, pp.
150
157
.10.1016/j.icheatmasstransfer.2017.04.002
151.
Naeimi
,
H.
, and
Kowsary
,
F.
,
2017
, “
Macro-Voxel Algorithm for Adaptive Grid Generation to Accelerate Grid Traversal in the Radiative Heat Transfer Analysis Via Monte Carlo Method
,”
Int. Comms. Heat Mass Transfer
87
, pp.
22
29
.10.1016/j.icheatmasstransfer.2017.06.020
152.
Farmer
,
J. A.
, and
Roy
,
S. P.
,
2019
, “
An Efficient Monte Carlo-Based Solver for Thermal Radiation in Participating Media
,”
Proceedings of Fourth Thermal and Fluids Engineering Conference
,
Las Vegas, NV
, Apr. 14–17, pp.
1565
1573
.https://www.researchgate.net/publication/333357146_AN_EFFICIENT_MONTE_CARLO-BASED_SOLVER_FOR_THERMAL_RADIATION_IN_PARTICIPATING_MEDIA
153.
Silvestri
,
S.
, and
Pecnik
,
R.
,
2019
, “
A Fast GPU Monte Carlo Radiative Heat Transfer Implementation for Coupling With Direct Numerical Simulation
,”
J. Comp. Phys. X
,
3
, p.
100032
.10.1016/j.jcpx.2019.100032
154.
Yuen
,
W. W.
,
Shepard
,
S.
, and
Takara
,
E.
,
2019
, “
The Zonal-Monte Carlo (Zonal-MC) Method, an Efficient and Accurate Solution Method for Multi-Dimensional Radiative Heat Transfer in Absorbing and Scattering Media
,”
Second Pacific Rim Thermal Engineering Conference
,
Maui, Hawaii
, Dec. 13–17.10.2514/1.T6242
155.
Yuen
,
W. W.
,
Dalfavero
,
B.
,
Shepard
,
S.
, and
Takara
,
E.
,
2021
, “
The Zonal-Monte Carlo (Zonal-MC) Method, an Effective Solution Method for Multi-Dimensional Radiative Transfer
,”
J. Thermophys. Heat Transfer
(in Press).
156.
Toublanc
,
D.
,
1996
, “
Henyey-Greenstein and Mie Phase Functions in Monte Carlo Radiative Transfer Computations
,”
Appl. Opt.
,
35
(
18
), pp.
3270
3274
.10.1364/AO.35.003270
157.
Wang
,
D.
, and
Zhou
,
H.
,
2019
, “
Quantitative Evaluation of the Computational Accuracy for the Monte Carlo Calculation of Radiative Heat Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
226
, pp.
100
114
.10.1016/j.jqsrt.2019.01.001
158.
Wang
,
D.
,
Cheng
,
Q.
,
Zhuo
,
X.
, and
Zhou
,
H.
,
2020
, “
Effects of Surface Emissivity and Medium Scattering Albedo on the Computational Accuracy of Radiative Heat Transfer by MCM
,”
J. Quant. Spectrosc. Radiat. Transfer
,
240
, p.
106712
.10.1016/j.jqsrt.2019.106712
159.
Sivathanu
,
Y. R.
, and
Gore
,
J. P.
,
1996
, “
Radiative Heat Transfer Inside a Cylindrical Enclosure With Nonparticipating Media Using a Deterministic Statistical Method
,”
Proc. ASME Heat Transfer Div.
, Vol.
1
,
P. D.
Jones
, eds.,
ASME
,
New York
, pp.
145
152
.
160.
Maruyama
,
S.
, and
Aihara
,
T.
,
1996
, “
Radiative Heat Transfer of Arbitrary 3-D Participating Media and Surfaces With Non-Participating Media by a Generalized Numerical Method REM2
,”
Radiative Transfer I- Proceedings of First International Symposium Radiation Transmission
,
M.
Pinar Mengüç
, ed.,
Begell House
,
New York
, pp.
153
167
.
161.
Katika
,
K. M.
, and
Pilon
,
L.
,
2006
, “
Modified Method of Characteristics for Transient Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
98
(
2
), pp.
220
237
.10.1016/j.jqsrt.2005.05.086
162.
Soucasse
,
L.
,
Rivière
,
P.
, and
Soufiani
,
A.
,
2013
, “
Monte Carlo Methods for Radiative Transfer in Quasi-Isothermal Participating Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
128
, pp.
34
42
.10.1016/j.jqsrt.2012.07.008
163.
Reisfeld
,
R.
,
Shamrakov
,
D.
, and
Jorgensen
,
C.
,
1994
, “
Photostable Solar Concentrators Based on Fluorescent Glass Films
,”
Sol. Energy Mater. Sol. Cells
,
33
(
4
), pp.
417
427
.10.1016/0927-0248(94)90002-7
164.
Liaparinos
,
P. F.
,
2013
, “
Light Wavelength Effects in Submicrometer Phosphor Materials Using Mie Scattering and Monte Carlo Simulation
,”
Med. Phys.
,
40
(
10
), p.
101911
.10.1118/1.4821089
165.
Leyre
,
S.
,
Ryckaert
,
J.
,
Acuna
,
P.
,
Audenaert
,
J.
,
Meuret
,
Y.
,
Hofkens
,
J.
,
Durinck
,
G.
,
Deconinck
,
G.
, and
Hanselaer
,
P.
,
2014
, “
Taking the Spectral Overlap Between Excitation and Emission Spectra of Fluorescent Materials Into Account With Monte Carlo Simulations
,”
SPIE Proc.
,
9131
, p.
913103
.10.1117/12.2051995
166.
Yalçin
,
R. A.
, and
Ertürk
,
H.
,
2021
, “
Monte Carlo Method Solution of the Broadband Fluorescent Radiative Transfer Equation Considering Fluorescent Cascade
,”
Appl. Opt.
,
60
(
4
), pp.
1068
1077
.10.1364/AO.410325
167.
Shaughnessy
,
B. M.
, and
Newborough
,
M.
,
1998
, “
A New Method for Tracking Radiative Paths in Monte Carlo Simulations
,”
ASME J. Heat Transfer
,
120
(
3
), pp.
792
795
.10.1115/1.2824355
168.
Göbel
,
G.
,
Lippek
,
A.
,
Wreidt
,
T.
, and
Bauckhage
,
K.
,
1998
, “
Monte Carlo Simulation of Light Scattering by Inhomogeneous Spheres
,”
Radiative Transfer II; Proceedings of the Second International Symposium on Radiation Transfer
,
M. P.
Mengüç
, ed.,
Begell House
,
New York
, pp.
367
376
.
169.
Wong
,
B. T.
, and
Mengüç
,
M. P.
,
2002
, “
Comparison of Monte Carlo Techniques to Predict the Propagation of a Collimated Beam in Participating Media
,”
Num. Heat Transfer B
,
42
(
2
), pp.
119
140
.10.1080/10407790190053860
170.
Wong
,
B. T.
, and
Mengüç
,
M. P.
,
2010
, “
A Unified Monte Carlo Treatment of the Transport of Electromagnetic Energy, Electrons, and Phonons in Absorbing and Scattering Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
3
), pp.
399
419
.10.1016/j.jqsrt.2009.10.008
171.
Delatorre
,
J.
,
Baud
,
G.
,
Bézian
,
J. J.
,
Blanco
,
S.
,
Caliot
,
C.
,
Cornet
,
J. F.
,
Coustet
,
C.
,
Dauchet
,
J.
,
El Hafi
,
M.
,
Eymet
,
V.
,
Fournier
,
R.
,
Gautrais
,
J.
,
Gourmel
,
O.
,
Joseph
,
D.
,
Meilhac
,
N.
,
Pajot
,
A.
,
Paulin
,
M.
,
Perez
,
P.
,
Piaud
,
B.
,
Roger
,
M.
,
Rolland
,
J.
,
Veynandt
,
F.
, and
Weitz
,
S.
,
2014
, “
Monte Carlo Advances and Concentrated Solar Applications
,”
Sol. Energy
,
103
, pp.
653
681
.10.1016/j.solener.2013.02.035
172.
Galtier
,
M.
,
El Hafi
,
M.
,
Eymet
,
V.
,
Fournier
,
R.
, and
Terrée
,
G.
,
2013
, “
Null Collision Monte Carlo Algorithms: A Meshless Technique to Deal With Radiative Problems in Heterogeneous Media
,”
Proceeding of the Seventh International Symposium on Radiative Transfer, RAD-13
,
Kuşadasi, Turkey
, June 2–8.10.1615/ICHMT.2013.IntSympRadTransf.50
173.
Eymet
,
V.
,
Poitou
,
D.
,
Galtier
,
M.
,
El Hafi
,
M.
,
Terrée
,
G.
, and
Fournier
,
R.
,
2013
, “
Null-Collision Meshless Monte Carlo: Application to the Validation of Fast Radiative Transfer Solvers Embedded in Combustion Simulators
,”
J. Quant. Spectrosc. Radiat. Transfer
,
129
, pp.
145
157
.10.1016/j.jqsrt.2013.06.004
174.
El Hafi
,
M.
,
Blanco
,
S.
,
Dauchet
,
J.
,
Galtier
,
M.
,
Fournier
,
R.
,
Tregan
,
J.-M.
, and
Villefranque
,
N.
,
2019
, “
Three Viewpoints on Null-Collision Monte Carlo Algorithms
,”
Proceedings of Ninth International Symposium on Radiation Transfer-RAD 19
,
Athens, Greece
, June
3
7
.
175.
Tregan
,
J.-M.
,
Blanco
,
S.
,
Dauchet
,
J.
,
El Hafi
,
M.
,
Fournier
,
R.
,
Ibarrart
,
L.
,
Lapeyre
,
P.
, and
Villefranque
,
N.
,
2020
, “
Convergence Issues in Derivatives of Monte Carlo Null-Collision Integral Formulations: A Solution
,”
J. Comput. Phys.
,
413
, p.
109463
.10.1016/j.jcp.2020.109463
176.
Galtier
,
M.
,
Blanco
,
S.
,
Caliot
,
C.
,
Coustet
,
C.
,
Dauchet
,
J.
,
El Hafi
,
M.
,
Eymet
,
V.
,
Fournier
,
R.
,
Gautrais
,
J.
,
Khuong
,
A.
,
Piaud
,
B.
, and
Terrée
,
G.
,
2013
, “
Integral Formulation of Null-Collision Monte Carlo Algorithms
,”
J. Quant. Spectrosc. Radiat. Transfer
,
125
, pp.
57
68
.10.1016/j.jqsrt.2013.04.001
177.
Wang
,
A.
, and
Modest
,
M. M.
,
2006
, “
Photon Monte Carlo Simulation for Radiative Transfer in Gaseous Media Represented by Discrete Particle Fields
,”
ASME J. Heat Transfer
,
128
(
10
), pp.
1041
1049
.10.1115/1.2345431
178.
Wang
,
A.
,
2007
, “
Investigation of Turbulence-Radiation Interactions in Turbulent Flames Using a Hybrid Finite Volume/Monte Carlo Approach
,” Ph.D. dissertation, Mechanical Engineering, Department,
Penn State University, State College, PA
.
179.
Deshmukh
,
K. V.
,
Haworth
,
D. C.
, and
Modest
,
M. F.
,
2007
, “
Direct Numerical Simulation of Turbulence–Radiation Interactions in Homogeneous Nonpremixed Combustion Systems
,”
Proc. Comb. Inst.
,
31
(
1
), pp.
1641
1648
.10.1016/j.proci.2006.07.139
180.
Galtier
,
M.
,
Roger
,
M. F.
,
André
,
F.
, and
Delmas
,
A.
,
2017
, “
A Symbolic Approach for the Identification of Radiative Properties
,”
J. Quant. Spectrosc. Radiat. Transfer
,
196
, pp.
130
141
.10.1016/j.jqsrt.2017.03.026
181.
Roger
,
M.
,
Galtier
,
M.
,
André
,
F.
, and
Delmas
,
A.
,
2018
, “
Symbolic Monte Carlo Methods: An Analysis Tool for the Experimental Determination of Radiative Properties at High-Temperature
,”
Proceedings of Eurotherm 110-Computational Thermal Radiation in Participating Media
,
Cascais, Portugal
, Apr. 11–13.
182.
Maanane
,
Y.
,
2020
, “
Identification Expérimentale de Propriétés Radiatives à Partir de Méthodes Monte Carlo Symbolique: Application Aux Matériaux Hétérogènes à Haute Température
,” Thesis,
CETHIL - Centre d'Energétique et de Thermique de Lyon, Université de Lyon
,
Lyon, France
.
183.
Maanane
,
Y.
,
Roger
,
M.
,
Delmas
,
A.
,
Galtier
,
M.
, and
André
,
F.
,
2020
, “
Symbolic Monte Carlo Method Applied to the Identification of Radiative Properties of a Heterogeneous Material
,”
J. Quant. Spectrosc. Radiat. Transfer
,
249
, p.
107019
.10.1016/j.jqsrt.2020.107019
184.
Dauchet
,
J.
,
Bezian
,
J.-J.
,
Blanco
,
S.
,
Caliot
,
C.
,
Charon
,
J.
,
Coustet
,
C.
,
El Hafi
,
M.
,
Eymet
,
V.
,
Farges
,
O.
,
Forest
,
V.
,
Fournier
,
R.
,
Galtier
,
M.
,
Gautrais
,
J.
,
Khuong
,
A.
,
Pelissier
,
L.
,
Piaud
,
B.
,
Roger
,
M.
,
Terrée
,
G.
, and
Weitz
,
S.
,
2018
, “
Addressing Nonlinearities in Monte Carlo
,”
Sci. Rep.
,
8
(
1
), p.
13302
.10.1038/s41598-018-31574-4
185.
Howell
,
J. R.
, and
Mengüç
,
M. P.
,
2018
, “
Challenges for Radiative Transfer 1: Towards the Effective Solution of Conjugate Heat Transfer Problems
,”
J. Quant. Spectrosc. Radiat. Transfer
,
221
, pp.
253
259
.10.1016/j.jqsrt.2018.10.016
186.
H. G.
,
Weller
,
G.
,
Tabor
,
H.
,
Jasak
, and
C.
, and
Fureby
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
187.
Gamble
,
S. J.
,
2020
, “
The Future of Quantum Computing Research
,”
Natl. Acad. Eng.
,
50
(
2
), pp.
64
66
.
188.
Heinrich
,
S.
,
2001
, “
From Monte Carlo to Quantum Computation
,” arXiv:quant-ph/0112152.
189.
Heinrich
,
S.
, and
Novak
,
E.
,
2001
, “
Optimal Summation and Integration by Deterministic, Randomized, and Quantum Algorithms
,”
Monte Carlo and Quasi-Monte Carlo Methods,
in
K. T.
Fang
,
H.
Niederreiter
, and
F. J.
Hickernell.
eds.,
Springer
,
Berlin, Heidelberg, Germany
.
190.
Montanaro
,
A.
,
2015
, “
Quantum Speedup of Monte Carlo Methods
,”
Proc. Roy. Soc. A
,
471
(
2181
), p.
20150301
.10.1098/rspa.2015.0301
191.
Miyamoto
,
K.
, and
Shiohara
,
K.
,
2020
, “
Reduction of Qubits in a Quantum Algorithm for Monte Carlo Simulation by a Pseudo-Random-Number Generator
,”
Phys. Rev. A
,
102
(
2
), p.
022424
,10.1103/PhysRevA.102.022424
192.
Matsekh
,
A.
,
Chacón
,
L.
,
Park
,
H.
, and
Chen
,
G.
,
2020
, “
On Learning Particle Distributions in the 1D Implicit Monte Carlo Simulations of Radiation Transport
,”
SPIE Proc.
11511
, p.
115110L
.10.1117/12.2567229
You do not currently have access to this content.