Abstract

This study establishes a numerical investigation of the optimal distribution of a limited amount of high thermal conductivity material to enhance the heat removal from 3D integrated circuits, IC. The structure of the heat spreader is designed as a composite of high thermal conductivity (Boron Arsenide) and moderate thermal conductivity (copper) materials. The volume ratio of high-conductivity inserts to the total volume of the spreader is set at a fixed pertinent ratio. Two different boundary conditions of constant and variable temperature are considered for the heat sink. To examine the impact of adding high-conductivity inserts on the cooling performance of the heat spreader, various patterns of the single and double ring inserts are studied. A parametric study is performed to find the optimal location of the rings. Moreover, the optimal distribution of the high-conductivity material between the inner and outer rings is found. The results show that for the optimal conditions, the maximum temperature of the 3D IC is reduced up to 10%; while at the same time, the size of the heat sink and heat spreader can be diminished by as much as 200%.

References

1.
Desai
,
C. P.
,
Vafai
,
K.
, and
Keyhani
,
M.
,
1995
, “
On the Natural Convection in a Cavity With a Cooled Top Wall and Multiple Protruding Heaters
,”
ASME J. Electron. Packag.
,
117
(
1
), pp.
34
45
.10.1115/1.2792065
2.
Mahjoob
,
S.
, and
Vafai
,
K.
,
2009
, “
Analytical Characterization and Production of an Isothermal Surface for Biological and Electronic Applications
,”
ASME J. Heat Transfer
,
131
(
5
), p.
052604
.10.1115/1.2995690
3.
Sparrow
,
E.
,
Gorman
,
J.
, and
Abraham
,
J.
,
2013
, “
Quantitative Assessment of the Overall Heat Transfer Coefficient U
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061102
.10.1115/1.4023566
4.
Sparrow
,
E. M.
,
Abraham
,
J. P.
, and
Chevalier
,
P. W.
,
2005
, “
A DOS-Enhanced Numerical Simulation of Heat Transfer and Fluid Flow Through an Array of Offset Fins With Conjugate Heating in the Bounding Solid
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
27
33
.10.1115/1.1800531
5.
Haji-Sheikh
,
A.
,
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
,
2002
, “
Certain Anomalies in the Analysis of Hyperbolic Heat Conduction
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
307
319
.10.1115/1.1447935
6.
Sparrow
,
E. M.
, and
Ansari
,
M. A.
,
1987
, “
Effect of Insulated/Uninsulated Channel Walls on Heat Transfer From a Horizontal Finned Tube in a Vertical Channel
,”
ASME J. Heat Transfer
,
109
(
2
), pp.
388
391
.10.1115/1.3248092
7.
Kang
,
S. S.
, and
Sparrow
,
E. M.
,
1987
, “
Heat Transfer From an Open- or Closed-Bore Cylinder Situated Longitudinal to a Freestream
,”
ASME J. Heat Transfer
,
109
(
2
), pp.
314
320
.10.1115/1.3248082
8.
Samie
,
F.
, and
Sparrow
,
E. M.
,
1986
, “
Heat Transfer From a Yawed Finned Tube
,”
ASME J. Heat Transfer
,
108
(
2
), pp.
479
482
.10.1115/1.3246956
9.
Kearney
,
D.
, and
Griffin
,
J.
,
2014
, “
An Open Loop Pulsating Heat Pipe for Integrated Electronic Cooling Applications
,”
ASME J. Heat Transfer
,
136
(
8
), p.
081401
.10.1115/1.4027131
10.
Nakayama
,
W.
,
2014
, “
Heat in Computers: Applied Heat Transfer in Information Technology
,”
ASME J. Heat Transfer
,
136
(
1
), p.
013001
.10.1115/1.4025377
11.
Herwig
,
H.
,
2013
, “
High Heat Flux Cooling of Electronics: The Need for a Paradigm Shift
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111013
.10.1115/1.4024621
12.
Sparrow
,
E. M.
,
Chevalier
,
P. W.
, and
Abraham
,
J. P.
,
2006
, “
The Design of Cold Plates for the Thermal Management Electronic Equipment
,”
ASME J. Heat Transfer
,
27
(
7
), pp.
6
16
.10.1080/01457630600742308
13.
Azari
,
M.
,
Sadeghi
,
A.
, and
Dejam
,
M.
,
2020
, “
Liquid Flow Forced Convection in Rectangular Microchannels With Nonuniform Heating: Toward Analytical Modeling of Hotspots
,”
ASME J. Heat Transfer
,
142
(
8
), p.
082505
.10.1115/1.4047148
14.
Colla
,
L.
,
Ercole
,
D.
,
Fedele
,
L.
,
Mancin
,
S.
,
Manca
,
O.
, and
Bobbo
,
S.
,
2017
, “
Nano-Phase Change Materials for Electronics Cooling Applications
,”
ASME J. Heat Transfer
,
139
(
5
), p.
052406
.10.1115/1.4036017
15.
Gielen
,
R.
, and
Baelmans
,
M.
,
2014
, “
Electronics Cooling System and Component Design According to the Second Law
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051401
.10.1115/1.4026058
16.
Vafai
,
K.
, and
Zhu
,
L.
,
1999
, “
Analysis of a Two-Layered Micro-Channel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2287
2297
.10.1016/S0017-9310(98)00017-9
17.
Lu
,
S.
, and
Vafai
,
K.
,
2016
, “
A Comparative Analysis of Innovative Microchannel Heat Sinks for Electronic Cooling
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
271
284
.10.1016/j.icheatmasstransfer.2016.04.024
18.
Zing
,
C.
,
Mahjoob
,
S.
, and
Vafai
,
K.
,
2019
, “
Analysis of Porous Filled Heat Exchangers for Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
133
, pp.
268
276
.10.1016/j.ijheatmasstransfer.2018.12.067
19.
Dirker
,
J. J. P.
, and
Meyer
,
J.
,
2013
, “
Topology Optimization for an Internal Heat-Conduction Cooling Scheme in a Square Domain for High Heat Flux Applications
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111010
.10.1115/1.4024615
20.
Sirisha Maganti
,
L.
,
Dhar
,
P.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2017
, “
Selecting Optimal Parallel Microchannel Configuration(s) for Active Hot Spot Mitigation of Multicore Microprocessors in Real Time
,”
ASME J. Heat Transfer
,
139
(
10
), p.
102401
.10.1115/1.4036643
21.
Shen
,
Z.
,
Jing
,
Q.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2017
, “
Thermal Performance of Miniscale Heat Sink With Jet Impingement and Dimple/Protrusion Structure
,”
ASME J. Heat Transfer
,
139
(
5
), p.
052202
.10.1115/1.4036035
22.
Flik
,
M. I.
, and
Tien
,
C. L.
,
1990
, “
Size Effect of the Thermal Conductivity of High-Tc Thin Film Superconductors
,”
ASME J. Heat Transfer
,
112
(
4
), pp.
872
881
.10.1115/1.2910494
23.
Daneshi
,
M.
,
Zare
,
M.
, and
Salimpour
,
M. R.
,
2013
, “
Micro-and Nanoscale Conductive Tree-Structures for Cooling a Disc-Shaped Electronic Piece
,”
ASME J. Heat Transfer
,
135
(
3
), p.
031401
.10.1115/1.4007903
24.
Banerjee
,
K.
,
Souri
,
S.
,
Kapur
,
P.
, and
Saraswat
,
K. C.
,
2001
, “
3-D ICs: A Novel Chip Design for Improving Deep Submicron Interconnect Performance and System-on-Chip Integration
,”
IEEE, Spec. Issue Interconnects
,
89
(
5
), pp.
602
633
.10.1109/5.929647
25.
Joyner
,
J. W.
,
Zarkesh-Ha
,
P.
,
Davis
,
J. A.
, and
Meindl
,
J. D.
,
2000
, “
A Three-Dimensional Stochastic Wire-Length Distribution for Variable Separation of Strata
,”
IEEE International Interconnect Technology Conference
,
Burlingame, CA
, June 7, Vol. 80, pp.
126
128
.10.1109/IITC.2000.854301
26.
Im
,
S.
, and
Banerjee
,
K.
,
2000
, “
Full Chip Thermal Analysis of Planar (2-D) and Vertically Integrated (3-D) High- Performance ICs
,”
International Electron Devices Meeting 2000. Technical Digest. IEDM
,
San Francisco, CA
, Dec. 10–13, pp.
727
730
.10.1109/IEDM.2000.904421
27.
Tavakkoli
,
F.
,
Ebrahimi
,
S.
,
Wang
,
S.
, and
Vafai
,
K.
,
2016
, “
Analysis of Critical Thermal Issues in 3D Integrated Circuits
,”
Int. J. Heat Mass Transfer
,
97
, pp.
338
352
.
28.
Banerjee
,
K.
,
Amerasekera
,
A.
,
Dixit
,
G.
, and
Hu
,
C.
,
1996
, “
The Effect of Interconnect Scaling and Low-k Dielectric on the Thermal Characteristics of the IC Metal
,”
International Electron Devices Meeting. Technical Digest
,
San Francisco, CA
, Dec. 8–11, Vol. 582, pp.
65
68
.10.1109/IEDM.1996.553123
29.
Goodson
,
K. E.
, and
Ju
,
Y. S.
,
1999
, “
Heat Conduction in Novel Electronic Films
,”
Annu. Rev. Mater. Sci.
,
29
(
1
), pp.
261
293
.10.1146/annurev.matsci.29.1.261
30.
Banerjee
,
K.
,
Souri
,
S. J.
,
Kapur
,
P.
, and
Saraswat
,
K. C.
,
2001
, “
3-D ICs: A Novel Chip Design for Improving Deep-Submicrometer Interconnect Performance and Systems-on-Chip Integration
,”
IEEE
,
89
(
5
), pp.
602
633
.
31.
Coskun
,
A. K.
,
Ayala
,
J. L.
,
Atienza
,
D.
,
Rosing
,
T. S.
, and
Leblebici
,
Y.
,
2009
, “
Dynamic Thermal Management in 3D Multicore Architectures
,”
Design, Automation & Test in Europe Conference & Exhibition
,
Nice, France
, Apr. 20–24, pp.
1410
1415
.10.1109/DATE.2009.5090885
32.
Tavakkoli
,
F.
,
Ebrahimi
,
S.
,
Wang
,
S.
, and
Vafai
,
K.
,
2016
, “
Thermophysical and Geometrical Effects on the Thermal Performance and Optimization of a three-Dimensional Integrated Circuit
,”
ASME J. Heat Transfer
,
138
(
8
), p.
082101
.10.1115/1.4033138
33.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2002
, “
Constructal Design for Cooling a Disc-Shaped Area by Conduction
,”
Int. J. Heat Mass Transfer
,
45
(
8
), pp.
1643
1652
.10.1016/S0017-9310(01)00269-1
34.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2006
, “
Conduction Tree Networks With Loops for Cooling a Heat- Generating Volume
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2626
2635
.10.1016/j.ijheatmasstransfer.2006.01.017
35.
da Silva
,
A. K.
,
Vasile
,
C.
, and
Bejan
,
A.
,
2004
, “
Disc Cooled With High-Conductivity Inserts That Extend Inward From the Perimeter
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4257
4263
.10.1016/j.ijheatmasstransfer.2004.04.024
36.
Ghodoossi
,
L.
, and
Eğrican
,
N.
,
2003
, “
Exact Solution for Cooling of Electronics Using Constructal Theory
,”
J. Appl. Phys.
,
93
(
8
), p.
4922
.10.1063/1.1562008
37.
Sharifi
,
F.
,
Ghaedamini
,
H.
, and
Salimpour
,
M. R.
,
2012
, “
Using Incomplete Variable Cross-Section Highly Conductive Inserts for Cooling a Disc
,”
Front. Heat Mass Transfer
,
3
, p.
043005
.10.5098/hmt.v3.4.3005
38.
Nazari
,
B.
,
Salimpour
,
M. R.
, and
Mahjoub
,
S.
,
2019
, “
Optimal Mechanical and Thermal Architecture of High-Conductivity Inserts for Cooling an Electronic Piece
,”
J. Therm. Anal. Calorim.
,
138
(
2
), pp.
1499
1514
.10.1007/s10973-019-08275-9
39.
Wang
,
C.
,
Huang
,
X.-J.
, and
Vafai
,
K.
,
2021
, “
Analysis of Hotspots and Cooling Strategy for Multilayer Three-Dimensional Integrated Circuits
,”
Appl. Therm. Eng.
,
186
, p.
116336
.10.1016/j.applthermaleng.2020.116336
40.
Arpaci
,
V. S.
,
1966
,
Conduction Heat Transfer
, 2nd ed.,
Addison-Wesley
,
Boston, MA
, p.
235
.
You do not currently have access to this content.