Abstract

In this paper for the first time, a Lattice Boltzmann Simulation is performed to analyze the simultaneous effects of a hot rotating elliptic cylinder and the magnetic field on the mixed convection flow in a square enclosure. Complicated flow patterns and isotherm plots are found and analyzed in the concentric annulus between the internal elliptic cylinder and the outer square enclosure. Results indicate that increasing the Reynolds number, instantaneous averaged Nusselt number of the enclosure and its oscillation amplitude increase, while decrease with increasing the Hartmann number especially at its lower values. Furthermore, response surface method is adopted to find the optimal location of the elliptic cylinder. Response surface optimization results reveal that the average Nusselt number shows a decreasing–increasing trend with increasing both nondimensional parameters of cylinder center (Xc, Yc). Finally, the optimal location of the elliptic cylinder for the maximum heat transfer rate is obtained as Xc = 0.65 and Yc = 0.35. Moreover, a comparative study is performed to evaluate the heat transfer effects of the elliptical cylinder rotation as compared to circular cylinder. It was found that the elliptical cylinder rotation has a significant effect on the heat transfer enhancement, especially at high values of Re and Ha. As an example, the heat transfer rate for the elliptical cylinder at Re = 200 is increased by 13% and 34% as compared to the circular cylinder at Ha = 50 and 100, respectively.

References

1.
Oropeza-Perez
,
I.
, and
Østergaard
,
P. A.
,
2018
, “
Active and Passive Cooling Methods for Dwellings: A Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
531
544
.10.1016/j.rser.2017.09.059
2.
Shih
,
Y. C.
,
Khodadadi
,
J.
,
Weng
,
K. H.
, and
Ahmed
,
A.
,
2009
, “
Periodic Fluid Flow and Heat Transfer in a Square Cavity Due to an Insulated or Isothermal Rotating Cylinder
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
11
), p.
111701
.10.1115/1.3154620
3.
Hussain
,
S. H.
, and
Hussein
,
A. K.
,
2011
, “
Mixed Convection Heat Transfer in a Differentially Heated Square Enclosure With a Conductive Rotating Circular Cylinder at Different Vertical Locations
,”
Int. Commun. Heat Mass Transfer
,
38
(
2
), pp.
263
274
.10.1016/j.icheatmasstransfer.2010.12.006
4.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dalal
,
A.
,
2014
, “
Analysis of Entropy Generation During Mixed Convective Heat Transfer of Nanofluids Past a Rotating Circular Cylinder
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
6
), p.
062501
.10.1115/1.4026470
5.
Chang
,
S.-C.
,
Chen
,
C.-L.
, and
Cheng
,
S.-C.
,
2015
, “
Analysis of Convective Heat Transfer Improved Impeller Stirred Tanks by the Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
87
, pp.
568
575
.10.1016/j.ijheatmasstransfer.2015.03.076
6.
Chamkha
,
A. J.
,
Selimefendigil
,
F.
, and
Ismael
,
M. A.
,
2016
, “
Mixed Convection in a Partially Layered Porous Cavity With an Inner Rotating Cylinder
,”
Numer. Heat Transfer, Part A: Appl.
,
69
(
6
), pp.
659
675
.10.1080/10407782.2015.1081027
7.
Ashrafizadeh
,
A.
, and
Hosseinjani
,
A. A.
,
2017
, “
A Phenomenological Study on the Convection Heat Transfer Around Two Enclosed Rotating Cylinders Via an Immersed Boundary Method
,”
Int. J. Heat Mass Transfer
,
107
, pp.
667
685
.10.1016/j.ijheatmasstransfer.2016.11.078
8.
Ismael
,
M. A.
, and
Jasim
,
H. F.
,
2018
, “
Role of the Fluid-Structure Interaction in Mixed Convection in a Vented Cavity
,”
Int. J. Mech. Sci.
,
135
, pp.
190
202
.10.1016/j.ijmecsci.2017.11.001
9.
Chen
,
C.-L.
,
Chang
,
S.-C.
, and
Chen
,
C.-Y.
,
2017
, “
Lattice Boltzmann Simulation of Convective Heat Transfer of non-Newtonian Fluids in Impeller Stirred Tank
,”
Appl. Math. Modell.
,
46
, pp.
519
535
.10.1016/j.apm.2017.01.088
10.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2018
, “
Mixed Convection of Nanofluids in a Three Dimensional Cavity With Two Adiabatic Inner Rotating Cylinders
,”
Int. J. Heat Mass Transfer
,
117
, pp.
331
343
.10.1016/j.ijheatmasstransfer.2017.09.116
11.
Kareem
,
A. K.
, and
Gao
,
S.
,
2018
, “
Mixed Convection Heat Transfer Enhancement in a Cubic Lid-Driven Cavity Containing a Rotating Cylinder Through the Introduction of Artificial Roughness on the Heated Wall
,”
Phys. Fluids
,
30
(
2
), p.
025103
.10.1063/1.5017474
12.
Khanafer
,
K.
,
Aithal
,
S. M.
, and
Vafai
,
K.
,
2019
, “
Mixed Convection Heat Transfer in a Differentially Heated Cavity With Two Rotating Cylinders
,”
Int. J. Therm. Sci.
,
135
, pp.
117
132
.10.1016/j.ijthermalsci.2018.07.020
13.
Shirani
,
E.
,
Toghraie
,
D.
, and
Rostami
,
S.
,
2021
, “
Comparative Study of Mixed Convection Heat Transfer of Water–Cu Nanofluid in an Enclosure Having Multiple Rotating Circular Cylinders With Different Configurations and Considering Harmonic Cylinders Rotation
,”
J. Therm. Anal. Calorim.
,
144
(
4
), pp.
1557
1570
.10.1007/s10973-020-09624-9
14.
Rahman
,
M. M.
,
Billah
,
M. M.
,
Rahim
,
N. A.
,
Saidur
,
R.
, and
Hasanuzzaman
,
M.
,
2012
, “
Finite Element Simulation of Magnetohydrodynamic Mixed Convection in a Double-Lid Driven Enclosure With a Square Heat-Generating Block
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
6
), p.
062501
.10.1115/1.4006010
15.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
, and
Ganji
,
D. D.
,
2013
, “
Numerical Investigation of MHD Effects on Al2O3–Water Nanofluid Flow and Heat Transfer in a Semi-Annulus Enclosure Using LBM
,”
Energy
,
60
, pp.
501
510
.10.1016/j.energy.2013.07.070
16.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2014
, “
Numerical Study of MHD Mixed Convection in a Nanofluid Filled Lid Driven Square Enclosure With a Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
78
, pp.
741
754
.10.1016/j.ijheatmasstransfer.2014.07.031
17.
Li
,
B.-W.
,
Wang
,
W.
, and
Zhang
,
J.-K.
,
2016
, “
Combined Effects of Magnetic Field and Thermal Radiation on Fluid Flow and Heat Transfer of Mixed Convection in a Vertical Cylindrical Annulus
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
6
), p.
062501
.10.1115/1.4032609
18.
Pordanjani
,
A. H.
,
Jahanbakhshi
,
A.
,
Nadooshan
,
A. A.
, and
Afrand
,
M.
,
2018
, “
Effect of Two Isothermal Obstacles on the Natural Convection of Nanofluid in the Presence of Magnetic Field Inside an Enclosure With Sinusoidal Wall Temperature Distribution
,”
Int. J. Heat Mass Transfer
,
121
, pp.
565
578
.10.1016/j.ijheatmasstransfer.2018.01.019
19.
Mehmood
,
K.
,
Hussain
,
S.
, and
Sagheer
,
M.
,
2017
, “
Mixed Convection in Alumina-Water Nanofluid Filled Lid-Driven Square Cavity With an Isothermally Heated Square Blockage Inside With Magnetic Field Effect: Introduction
,”
Int. J. Heat Mass Transfer
,
109
, pp.
397
409
.10.1016/j.ijheatmasstransfer.2017.01.117
20.
Barnoon
,
P.
,
Toghraie
,
D.
,
Salarnia
,
M.
, and
Karimipour
,
A.
,
2020
, “
Mixed Thermomagnetic Convection of Ferrofluid in a Porous Cavity Equipped With Rotating Cylinders: LTE and LTNE Models
,”
J. Therm. Anal. Calorim.
,
146
, pp.
187
226
.10.1007/s10973-020-09866-7
21.
Khozeymeh-Nezhad
,
H.
, and
Mirbozorgi
,
S. A.
,
2012
, “
Comparison of Natural Convection Around a Circular Cylinder With a Square Cylinder Inside a Square Enclosure
,”
J. Mech. Eng. Autom.
,
2
(
6
), pp.
176
183
.10.5923/j.jmea.20120206.08
22.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.10.1103/PhysRev.94.511
23.
Khozeymeh-Nezhad
,
H.
, and
Niazmand
,
H.
,
2018
, “
LBM Simulation of Fluid Flow in a Viscous Micropump With Non-Circular Rotors and RSM Approach for Multiple Response Optimization
,”
Int. J. Heat Fluid Flow
,
71
, pp.
392
405
.10.1016/j.ijheatfluidflow.2018.05.002
24.
Khozeymeh-Nezhad
,
H.
, and
Niazmand
,
H.
,
2018
, “
A Double MRT-LBM for Simulation of Mixing in an Active Micromixer With Rotationally Oscillating Stirrer in High Peclet Number Flows
,”
Int. J. Heat Mass Transfer
,
122
, pp.
913
921
.10.1016/j.ijheatmasstransfer.2018.02.033
25.
Sukop
,
D. T. T. M. C.
,
2007
,
Lattice Boltzmann Modeling an Introduction for Geoscientists and Engineers
,
Springer-Verlag Berlin Heidelberg
.
26.
YuMei
,
D.
, and
Shyy
,
R. W.
,
2003
, “
A Unified Boundary Treatment in Lattice Boltzmann Method
,”
AIAA Paper No. 2003-0953
. 10.2514/6.2003-0953
27.
Yan
,
Y.
, and
Zu
,
Y.
,
2008
, “
Numerical Simulation of Heat Transfer and Fluid Flow Past a Rotating Isothermal Cylinder–A LBM Approach
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2519
2536
.10.1016/j.ijheatmasstransfer.2007.07.053
28.
Lallemand
,
P.
, and
Luo
,
L. S.
,
2003
, “
Lattice Boltzmann Method for Moving Boundaries
,”
J. Comput. Phys.
,
184
(
2
), pp.
406
421
.10.1016/S0021-9991(02)00022-0
29.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1976
, “
An Experimental and Theoretical Study of Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
J. Fluid Mech.
,
74
(
4
), pp.
695
719
.10.1017/S0022112076002012
30.
Liao
,
C. C.
, and
Lin
,
C. A.
,
2014
, “
Mixed Convection of a Heated Rotating Cylinder in a Square Enclosure
,”
Int. J. Heat Mass Transfer
,
72
, pp.
9
22
.10.1016/j.ijheatmasstransfer.2013.12.081
31.
Khozeymeh-Nezhad
,
H.
,
Fallah-Kharmiani
,
S.
, and
Niazmand
,
H.
,
2021
, “
Intensification of Mixing-Pumping Process in a Novel Active Micropump-Mixer With Maximum Efficiency and Minimum Energy Cost: A LBM-RSM Approach
,”
Chem. Eng. Process. Process Intensif.
,
158
, p.
108219
.10.1016/j.cep.2020.108219
32.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
,
2016
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
,
Hoboken, NJ
.
33.
Basati
,
Y.
,
Mohammadipour
,
O. R.
, and
Niazmand
,
H.
,
2019
, “
Numerical Investigation and Simultaneous Optimization of Geometry and Zeta-Potential in Electroosmotic Mixing Flows
,”
Int. J. Heat Mass Transfer
,
133
, pp.
786
799
.10.1016/j.ijheatmasstransfer.2018.12.159
You do not currently have access to this content.