Abstract

Thermofluid dynamics of an unconfined steady two-dimensional laminar jet impinging on an isothermal protruded heater is numerically studied for low jet inlet Reynolds number (Re) between 50 and 250. Results are shown for a range of impingement distances (h/W) between 1 and 10 for Prandtl numbers (Pr) 0.71 and 7.56. The volumetric entrainment increases with increasing h/w and decreasing Re. The reattachment distance of the wall jet appears to increase with Re and shows discernible deviation from the backward-facing step flow prediction for Re>150. Correlations are presented for average heater surface and sidewall Nusselt numbers as functions of Re and h/w for Pr=0.71 and Pr=7.56. In an overall convection dominant heat transfer, a relatively warmer and diffusion-dominated recirculation zone is identified adjacent to the sidewall with a low Nusselt number, which enhances significantly at Pr=7.56 when Re is increased above 100. At a low impingement distance, integrated kinetic energy flux shows greater magnitude in the impingement region but with a higher rate of decay. The integrated heat flux is greatly influenced by Re, and the effect is more pronounced at Pr=0.71. Self-similar behavior is observed for the velocity and heat flux profiles throughout the length in the developed region and for the temperature distribution over the heater surface. Both high Re and high h/w seem to adversely affect the self-similar behavior owing to a slower wall jet development.

References

1.
Sun
,
H.
,
Ma
,
C. F.
, and
Nakayama
,
W.
,
1993
, “
Local Characteristics of Convective Heat Transfer From Simulated Microelectronic Chips to Impinging Submerged Round Water Jets
,”
ASME J. Electron. Packag.
,
115
(
1
), pp.
71
77
.10.1115/1.2909304
2.
San
,
J.-Y.
, and
Chen
,
J.-J.
,
2014
, “
Effects of Jet-to-Jet Spacing and Jet Height on Heat Transfer Characteristics of an Impinging Jet Array
,”
Int. J. Heat Mass Transfer
,
71
, pp.
8
17
.10.1016/j.ijheatmasstransfer.2013.11.079
3.
Stathopoulos
,
P.
,
Meier
,
T.
, and
Rudolf von Rohr
,
P.
,
2014
, “
Hydrothermal Flame Impingement Experiments: Combustion Chamber Design and Impingement Temperature Profiles
,”
J. Supercrit. Fluids
,
89
, pp.
48
57
.10.1016/j.supflu.2013.12.005
4.
Reynolds
,
A. J.
,
1962
, “
Observations of a Liquid-Into-Liquid Jet
,”
J. Fluid Mech.
,
14
(
4
), pp.
552
556
.10.1017/S0022112062001433
5.
Bajura
,
R. A.
, and Szewczyk, A. A.,
1970
, “
Experimental Investigation of a Laminar Two-Dimensional Plane Wall Jet
,”
Phys. Fluids
,
13
(
7
), pp.
1653
.10.1063/1.1693137
6.
Sparrow
,
E.
, and
Wong
,
T.
,
1975
, “
Impingement Transfer Coefficients Due to Initially Laminar Slot Jets
,”
Int. J. Heat Mass Transfer
,
18
(
5
), pp.
597
605
.10.1016/0017-9310(75)90271-9
7.
Van Heiningen
,
A. R. P.
,
Mujumdar
,
A. S.
, and
Douglas
,
W. J. M.
,
1976
, “
Numerical Prediction of the Flow Field and Impingement Heat Transfer Caused by a Laminar Slot Jet
,”
ASME J. Heat Transfer
98
(
4
), pp.
654
658
.10.1115/1.3450615
8.
Saad
,
N. R.
,
Douglas
,
W. J. M.
, and
Mujumdar
,
A. S.
,
1977
, “
Prediction of Heat Transfer Under an Axisymmetric Laminar Impinging Jet
,”
Ind. Eng. Chem. Fundam.
,
16
(
1
), pp.
148
154
.10.1021/i160061a027
9.
Deshpande
,
M. D.
, and
Vaishnav
,
R. N.
,
1982
, “
Submerged Laminar Jet Impingement on a Plane
,”
J. Fluid Mech.
,
114
(
1
), pp.
213
.10.1017/S0022112082000111
10.
Law
,
H.-S.
, and
Masliyah
,
J. H.
,
1984
, “
Numerical Prediction of the Flow Field Due to a Confined Laminar Two-Dimensional Submerged Jet
,”
Comput. Fluids
,
12
(
3
), pp.
199
215
.10.1016/0045-7930(84)90004-5
11.
Womac
,
D.
,
Aharoni
,
G.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
,
1990
, “
Single Phase Liquid Jet Impingement Cooling of Small Heat Sources
,”
Proceeding of International Heat Transfer Conference 9
, Jerusalem, Israel, Aug. 19-24, Begellhouse, pp.
149
154
.
12.
Ma
,
C. F.
,
Sun
,
H.
,
Auracher
,
H.
, and
Gomi
,
T.
,
1990
, “
Local Convective Heat Transfer From Vertical Heated Surfaces to Impinging Circular Jets of Large Prandtl Number
,”
Proceeding of International Heat Transfer Conference 9, Jerusalem, Israel, Aug. 19-24
, Begellhouse, pp.
441
446
.
13.
Elison
,
B.
, and
Webb
,
B. W.
,
1994
, “
Local Heat Transfer to Impinging Liquid Jets in the Initially Laminar, Transitional, and Turbulent Regimes
,”
Int. J. Heat Mass Transfer
,
37
(
8
), pp.
1207
1216
.10.1016/0017-9310(94)90206-2
14.
Quintana
,
D. L.
,
Amitay
,
M.
,
Ortega
,
A.
, and
Wygnanski
,
I. J.
,
1997
, “
Heat Transfer in the Forced Laminar Wall Jet
,”
ASME J. Heat Transfer
119
(
3
), pp.
451
459
.10.1115/1.2824118
15.
Kanna
,
P. R.
, and
Das
,
M. K.
,
2006
, “
Numerical Simulation of Two-Dimensional Laminar Incompressible Wall Jet Flow Under Backward-Facing Step
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
1023
1035
.10.1115/1.2243298
16.
Rohlfs
,
W.
,
Haustein
,
H. D.
,
Garbrecht
,
O.
, and
Kneer
,
R.
,
2012
, “
Insights Into the Local Heat Transfer of a Submerged Impinging Jet: Influence of Local Flow Acceleration and Vortex-Wall Interaction
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7728
7736
.10.1016/j.ijheatmasstransfer.2012.07.081
17.
Bieber
,
M.
,
Kneer
,
R.
, and
Rohlfs
,
W.
,
2017
, “
Self-Similarity of Heat Transfer Characteristics in Laminar Submerged and Free-Surface Slot Jet Impingement
,”
Int. J. Heat Mass Transfer
,
104
, pp.
1341
1352
.10.1016/j.ijheatmasstransfer.2016.08.104
18.
Beltaos
,
S.
, and
Rajaratnam
,
N.
,
1973
, “
Plane Turbulent Impinging Jets
,”
J. Hydraul. Res.
,
11
(
1
), pp.
29
59
.10.1080/00221687309499789
19.
Goldstein
,
R. J.
,
Sobolik
,
K. A.
, and
Seol
,
W. S.
,
1990
, “
Effect of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat Surface
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
608
611
.10.1115/1.2910430
20.
Baughn
,
J. W.
,
Hechanova
,
A. E.
, and
Yan
,
X.
,
1991
, “
An Experimental Study of Entrainment Effects on the Heat Transfer From a Flat Surface to a Heated Circular Impinging Jet
,”
ASME J. Heat Transfer
,
113
(
4
), pp.
1023
1025
.10.1115/1.2911197
21.
Garimella
,
S. V.
, and
Rice
,
R. A.
,
1995
, “
Confined and Submerged Liquid Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
871
877
.10.1115/1.2836304
22.
Pramanik
,
S.
, and
Das
,
M. K.
,
2014
, “
Computational Study of a Turbulent Wall Jet Flow on an Oblique Surface
,”
Int. J. Numer. Methods Heat Fluid Flow
,
24
(
2
), pp.
290
324
.10.1108/HFF-01-2012-0005
23.
Ekiciler
,
R.
,
Çetinkaya
,
M. S. A.
, and
Arslan
,
K.
,
2019
, “
Convective Heat Transfer Investigation of a Confined Air Slot-Jet Impingement Cooling on Corrugated Surfaces With Different Wave Shapes
,”
ASME J. Heat Transfer
,
141
(
2
), pp.
022202
.10.1115/1.4041954
24.
Singh
,
P.
,
Nithyanandam
,
K.
,
Zhang
,
M.
, and
Mahajan
,
R. L.
,
2020
, “
The Effect of Metal Foam Thickness on Jet Array Impingement Heat Transfer in High-Porosity Aluminum Foams
,”
ASME J. Heat Transfer
,
142
(
5
), pp.
052301
.10.1115/1.4045640
25.
Kimura
,
S.
, and
Bejan
,
A.
,
1983
, “
The “Heatline” Visualization of Convective Heat Transfer
,”
ASME J. Heat Transfer
,
105
(
4
), pp.
916
919
.10.1115/1.3245684
26.
Mookherjee
,
O.
, and
Pramanik
,
S.
,
2019
, “
Integrated Fluxes in Magneto-Hydrodynamic Mixed Convection in a Cavity Sustained by Conjugate Heat Transfer
,”
ASME J. Heat Transfer
,
141
(
11
), pp.
112501
.10.1115/1.4044389
27.
Chung
,
T. J.
,
2010
,
Computational Fluid Dynamics
,
2
nd ed,
Cambridge University Press
,
New York
.
28.
Hayase
,
T.
,
Humphrey
,
J.
, and
Greif
,
R.
,
1992
, “
A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite Volume Iterative Calculation Procedures
,”
J. Comput. Phys.
,
98
(
1
), pp.
108
118
.10.1016/0021-9991(92)90177-Z
29.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson Education Ltd
,
Harlow, Essex, UK.
30.
Thom
,
A.
,
1933
, “
The Flow Past Circular Cylinders at Low Speeds
,”
Proc. R. Soc. London, Ser. A
,
141
(
845
), pp.
651
669
.10.1098/rspa.1933.0146
31.
White
,
F. M.
,
2011
,
Viscous Fluid Flow
,
3
rd ed, Tata McGraw-Hill Education, New Delhi.
32.
Barton
,
I. E.
,
1997
, “
The Entrance Effect of Laminar Flow Over a Backward-Facing Step Geometry
,”
Int. J. Numer. Methods Fluids
,
25
(
6
), pp.
633
644
.10.1002/(SICI)1097-0363(19970930)25:6<633::AID-FLD551>3.0.CO;2-H
33.
Holman
,
J. P.
,
2012
,
Experimental Methods for Engineers
, 8th ed, McGraw-Hill, New York.
You do not currently have access to this content.