Abstract

The accumulation of particles in the internal cooling channel reduces the cooling effectiveness of the turbine blades and even affects the safe operation of the aero engine. Discrete phase-CFD simulations of particles deposition were performed in the U-bend ribbed passage by applying Euler–Lagrange method. Reynolds Average Navier–Stokes method was used for the gas phase calculation. The realizable k–ε turbulence model and enhanced wall treatment were adopted. The discrete phase was solved by using Lagrangian with random walk model. A particle deposition model was implemented by using user-defined functions. The Reynolds numbers of 30,000, 23,000, and 15,500 were studied. Particles diameters in the range 1–20 μm were considered. The particles deposition distribution of different locations is obtained in this study, and the influence of the Reynolds numbers and particle diameters on particles deposition performance are analyzed. Results show that the first row of ribs has a protective effect on the back row of ribs. The increased Reynolds number and increased particles diameter promote the deposition of particles on the wall.

References

1.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
350
360
.10.2514/1.18462
2.
Tabakoff
,
W.
,
1984
, “
Review-Turbomachinery Performance Deterioration Exposed to Solid Particulate Environment
,”
ASME J. Fluid Eng.
,
106
(
2
), pp.
125
134
.10.1115/1.3243088
3.
Dring
,
R. P.
,
Caspar
,
J. R.
, and
Suo
,
M.
,
1979
, “
Particle Trajectories in Turbine Cascades
,”
J. Energy
,
3
(
3
), pp.
161
166
.10.2514/3.47996
4.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
641
651
.10.1115/1.2906754
5.
Jensen
,
J. W.
,
Squire
,
S. W.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
,
2004
, “
Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility
,”
ASME Paper No. GT2004-53324
.10.1115/GT2004-53324
6.
Ai
,
W.
,
Murray
,
N.
,
Fletcher
,
T. H.
,
Harding
,
S.
,
Lewis
,
S.
, and
Bons
,
J. P.
,
2008
, “
Deposition Near Film Cooling Holes on a High-Pressure Turbine Vane
,”
ASME Paper No. GT2008-50901
.10.1115/GT2008-50901
7.
Lundgreen
,
R.
,
Sacco
,
C.
,
Prenter
,
R.
, and
Bons
,
J. P.
,
2016
, “
Temperature Effects on Nozzle Guide Vane Deposition in a New Turbine Cascade Rig
,”
ASME Paper No. GT2016-57560
.10.1115/GT2016-57560
8.
Yang
,
X.
,
Hu
,
Y.
, and
Yu
,
T.
,
2019
, “
Numerical Modeling of Particles Deposition in Turbine Cascade
,”
ASME Paper No. GT2019-90739
.10.1115/GT2019-90739
9.
Ye
,
L.
,
Liu
,
C.-L.
,
Zhu
,
H.-R.
, and
Luo
,
J.-X.
,
2019
, “
Experimental Investigation on Effect of Cross-Flow Reynolds Number on Film Cooling Effectiveness
,”
AIAA J.
,
57
(
11
), pp.
4804
4814
.10.2514/1.J057943
10.
Ye
,
L.
,
Liu
,
C.-L.
,
Zhou
,
D.-E.
, and
Zhu
,
H.-R.
,
2020
, “
Experimental and Numerical Investigations on the Heat Transfer of Film-Cooling With Cylindrical Holes Fed With Internal Coolant Cross Flow
,”
ASME J. Heat Transfer
,
142
(
5
), p.
052302
.10.1115/1.4046441
11.
Cardwell
,
N. D.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2008
, “
Investigation of Sand Blocking Within Impingement and Film-Cooling Holes
,”
ASME Paper No. GT2008-51351
.10.1115/GT2008-51351
12.
Sebastien
,
W.
,
Alexander
,
B.
, and
Peter
,
F.
,
2016
, “
Reduction in Flow Parameter Resulting From Volcanic Ash Deposition in Engine Representative Cooling Passages
,”
ASME Paper No. GT-2016-57296
.10.1115/GT-2016-57296
13.
Chen
,
W. L.
,
Ryan
,
L.
, and
Guo
,
B.
,
2018
, “
A Numerical Study of Dust Deposition in a Model Turbine Vane Cooling Passage
,”
ASME Paper No. GT2018-75833
.10.1115/GT2018-75833
14.
Jonathan
,
B. C.
, and
Tafti
,
D. K.
,
2010
, “
Investigation of Sand Particle Deposition and Erosion Within a Short Pin Fin Array
,”
ASME Paper No. GT2010-22362
.10.1115/GT2010-22362
15.
Singh
,
S.
, and
Tafti
,
D. K.
,
2012
, “
Sand Transport in a Two Pass Internal Cooling Duct With Rib Turbulators
,”
ASME Paper No. HT2012-58100
.10.1115/HT2012-58100
16.
Dowd
,
C.
,
Tafti
,
D. K.
, and
Kuahai
,
Y.
,
2017
, “
Sand Transport and Deposition in Rotating Two-Passed Ribbed Duct With Coriolis and Centrifugal Buoyancy Forces at Re=100000
,”
ASME Paper No. GT2017-63167
.10.1115/GT2017-63167
17.
Jiang
,
H.
,
Lu
,
L.
, and
Sun
,
K.
,
2010
, “
Simulation of Particle Deposition in Ventilation Duct With a Particle-Wall Impact Model
,”
Build. Environ.
,
45
(
5
), pp.
1184
1191
.10.1016/j.buildenv.2009.11.001
18.
Sun
,
K.
,
Lu
,
L.
, and
Jiang
,
H.
,
2011
, “
Modelling of Particle Deposition and Rebound Behaviour on Ventilation Ducting Wall Using an Improved Wall Model
,”
Indoor Built Environ.
,
20
(
3
), pp.
300
312
.10.1177/1420326X11411241
19.
William
,
C. H.
,
2000
, “
Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles
,”
J. Aerosol Sci.
,
31
(
9
), pp.
1121
1122
.https://www.sci-hub.tf/10.1016/s0021-8502(99)00571-6
20.
Saffman
,
P. G.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
(
2
), pp.
385
400
.10.1017/S0022112065000824
21.
By
,
L. T.
,
1980
, “
Thermophoresis of Particles in a Heated Boundary Layer
,”
J. Fluid Mech.
,
101
(4), pp.
737
758
.https://www.sci-hub.tf/10.1017/s0022112080001905
22.
El-Batsh
,
H.
, and
Haselbacher
,
H.
,
2002
, “
Numerical Investigation of the Effect of Ash Particle Deposition on the Flow Field Through Turbine Cascades
,”
ASME Paper No. GT-2002-30600
.10.1115/GT-2002-30600
23.
Ai
,
W. G.
, and
Fletcher
,
T. H.
,
2012
, “
Computational Analysis of Conjugate Heat Transfer and Particulate Deposition on a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(
4
), pp.
435
441
.10.1115/1.4003716
24.
Zhang
,
J.
, and
Li
,
A.
,
2008
, “
Study on Particle Deposition in Vertical Square Ventilation Duct Flows by Different Models
,”
Energy Convers. Manage.
,
49
(
5
), pp.
1008
1018
.10.1016/j.enconman.2007.10.010
25.
Sippola
,
M. R.
,
2002
, “
Particle Deposition in Ventilation Ducts
,” Ph.D. dissertation,
University of California
,
Berkeley, CA
.
26.
Wood
,
N. B.
,
1981
, “
The Mass Transfer of Particles and Acid Vapor to Cooled Surfaces
,”
J. Energy Inst.
,
76
(
1
), pp.
76
93
.https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL82X0039726
27.
Papavergos
,
P. G.
, and
Hedley
,
A. B.
,
1984
, “
Particle Deposition Behavior From Turbulent Flows
,”
Chem. Eng. Res. Des.
,
62
(
3
), pp.
275
295
.https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8855754
28.
Liu
,
B. Y. H.
, and
Agarwal
,
J. K.
,
1974
, “
Experimental Observation of Aerosol Deposition in Turbulent Flow
,”
J. Aerosol Sci.
,
5
(
2
), pp.
145
155
.10.1016/0021-8502(74)90046-9
29.
Sehmel
,
G. A.
,
1968
, “
A Particle Size Distribution Function for Data Recorded in Size Ranges
,”
Ann. Occup. Hyg.
,
11
, pp.
87
98
.https://www.sci-hub.tf/10.1093/annhyg/11.2.87
30.
Sippola
,
M. R.
, and
William
,
W. N.
,
2005
, “
Particle Deposition in Ventilation Ducts: Connectors, Bends and Developing Turbulent Flow
,”
Aerosol Sci. Technol.
,
39
(
2
), pp.
139
150
.10.1080/027868290908795
You do not currently have access to this content.