Abstract

In this paper, the role of sinusoidal wavy surface in enhancing the heat transfer is numerically studied. The heat transfer characteristics are studied for two thermal boundary conditions of the wavy wall. To assess the effect of wavy wall, the amplitude is varied between 0.1 and 0.7 and number of cycle from 4 to 12 at an interval of 0.1 and 1, respectively. In order to see the effect of offset ratio, it is varied between 3 and 15 at an interval of 2. The Reynolds number (Re) and Prandtl number (Pr) are set to 15, 000 and 0.71, respectively, for all the numerical simulations. It is found that the maximum average Nusselt number (Nuavg) depends not only on the amplitude and number of cycle but also on the offset ratio. Overall, 23.27% in maximum heat transfer enhancement is achieved with reference to the plane wall surface. An approximately linear decrement in maximum Nuavg is observed when offset ratio increases. The results indicate that Nuavg increases with an increase in the amplitude of sinusoidal wavy surface up to N = 8 and almost follows the linear trend up to N = 7. It is also found that Nux is always on the higher side as compared to the corresponding case of a plane wall surface when N = 4, irrespective of the offset ratio. With an increase in N, Nux fluctuates about the result of plane wall surface after the initial increase because of the obstruction. The amplitude of the fluctuation increases with an increase in the number of cycle N, which indicates that fluid accelerates and decelerates gradually owing to the presence of trough and crest. Also, it is worth noticing that for some cases, there is a decrease in the heat transfer rate as compared to the plane wall case. Therefore, it is concluded that the increase in the surface area does not necessarily result in an increase in the heat transfer rate.

References

1.
Rajaratnam
,
N.
,
1976
,
Turbulent Jets
,
Elsevier Scientific Publishing Company
,
Amsterdam, Oxford, New York
.
2.
Wang
,
X. K.
, and
Tan
,
S. K.
,
2007
, “
Experimental Investigation of the Interaction Between a Plane Wall Jet and a Parallel Offset Jet
,”
Exp. Fluids
,
42
(
4
), pp.
551
562
.10.1007/s00348-007-0263-9
3.
Kumar
,
A.
, and
Das
,
M. K.
,
2011
, “
Study of a Turbulent Dual Jet Consisting of a Wall Jet and an Offset Jet
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101201
.10.1115/1.4004823
4.
Kumar
,
A.
,
2015
, “
Mean Flow and Thermal Characteristics of a Turbulent Dual Jet Consisting of a Plane Wall Jet and a Parallel Offset Jet
,”
Numer. Heat Transfer: Part A
,
67
(
10
), pp.
1075
1096
.10.1080/10407782.2014.955348
5.
Hnaien
,
N.
,
Marzouk
,
S.
,
Aissia
,
H. B.
, and
Jay
,
J.
,
2017
, “
CFD Investigation on the Offset Ratio Effect on Thermal Characteristics of a Combined Wall and Offset Jets Flow
,”
Heat Mass Transfer
,
53
(
8
), pp.
2531
2549
.10.1007/s00231-017-2000-0
6.
Hnaien
,
N.
,
Marzouk
,
S.
,
Aissia
,
H. B.
, and
Jay
,
J.
,
2017
, “
Wall Inclination Effect in Heat Transfer Characteristics of a Combined Wall and Offset Jet Flow
,”
Int. J. Heat Fluid Flow
,
64
, pp.
66
78
.10.1016/j.ijheatfluidflow.2017.01.010
7.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2020
, “
Heat Transfer and Fluid Flow Characteristics of a Turbulent Dual Jet Impinging on a Wavy Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041017
.10.1115/1.4045882
8.
Tritton
,
D. J.
,
1977
,
Physical Fluid Dynamics
,
Von Norstrand Reinhold
,
UK
, pp.
284
286
.10.1002/qj.49710343830
9.
Bisoi
,
M.
,
Das
,
M. K.
,
Roy
,
S.
, and
Patel
,
D. K.
,
2017
, “
Large Eddy Simulation of Three-Dimensional Plane Turbulent Free Jet Flow
,”
Eur. J. Mech. B/Fluids
,
65
, pp.
423
439
.10.1016/j.euromechflu.2017.02.003
10.
Krohn
,
B.
,
Qin
,
S.
,
Downing
,
J.
,
Petrov
,
V.
, and
Manera
,
A.
,
2019
, “
An Experimental Study of Local Self-Similarity in the Mixing Transition of a Turbulent Free Jet
,”
Nucl. Sci. Eng.
,
193
(
1–2
), pp.
171
184
.10.1080/00295639.2018.1507360
11.
Qin
,
S.
,
Krohn
,
B.
,
Downing
,
J.
,
Petrov
,
V.
, and
Manera
,
A.
,
2019
, “
High-Resolution Velocity Field Measurements of Turbulent Round Free Jets in Uniform Environments
,”
Nucl. Technol.
,
205
(
1–2
), pp.
213
225
.10.1080/00295450.2018.1470864
12.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2015
, “
A Comparative Study of Heat Transfer Characteristics of Wall-Bounded Jets Using Different Turbulence Models
,”
Int. J. Therm. Sci.
,
89
, pp.
337
356
.10.1016/j.ijthermalsci.2014.11.019
13.
Chowdhury
,
M. N.
,
Khan
,
A. A.
, and
Testik
,
F. Y.
,
2017
, “
Numerical Investigation of Circular Turbulent Jets in Shallow Water
,”
J. Hydraul. Eng.
,
143
(
9
), p.
04017027
.10.1061/(ASCE)HY.1943-7900.0001327
14.
Ayech
,
S. B. H.
,
Said
,
N. M.
,
Bournot
,
P.
, and
Palec
,
G. L.
,
2017
, “
Investigation of a Turbulent Wall Jet in Forced Convection Issuing Into a Directed Coflow Stream
,”
J. Turbul.
,
18
(
6
), pp.
539
559
.10.1080/14685248.2017.1305497
15.
Takahashi
,
M.
,
Iwano
,
K.
,
Sakai
,
Y.
, and
Ito
,
Y.
,
2019
, “
Experimental Investigation on Destruction of Reynolds Stress in a Plane Jet
,”
Exp. Fluids
,
60
(
3
), pp.
1
15
.10.1007/s00348-019-2691-8
16.
Sharma
,
S.
,
Jesudhas
,
V.
,
Balachandar
,
R.
, and
Barron
,
R.
,
2019
, “
Turbulence Structure of a Counter-Flowing Wall Jet
,”
Phys. Fluids
,
31
(
2
), p.
025110
.10.1063/1.5082550
17.
Rostamy
,
N.
,
Bergstrom
,
D. J.
,
Sumner
,
D.
, and
Bugg
,
J. D.
,
2011
, “
The Effect of Surface Roughness on the Turbulence Structure of a Plane Wall Jet
,”
Phys. Fluid
,
23
(
8
), p.
085103
.10.1063/1.3614478
18.
Rostamy
,
N.
,
Bergstrom
,
D. J.
,
Sumner
,
D.
, and
Bugg
,
J. D.
,
2011
, “
An Experimental Study of a Turbulent Wall Jet on Smooth and Transitionally Rough Surfaces
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111207
.10.1115/1.4005218
19.
Nizou
,
P. Y.
,
1981
, “
Heat and Momentum Transfer in a Plane Turbulent Wall Jet
,”
ASME J. Heat Transfer
,
103
(
1
), pp.
138
140
.10.1115/1.3244407
20.
AbdulNour
,
R. S.
,
Willenborg
,
K.
,
Mc Grath
,
J. J.
,
Foss
,
J. F.
, and
AbdulNour
,
B. S.
,
2000
, “
Measurements of the Convection Heat Transfer Coefficient for a Planar Wall Jet: Uniform Temperature and Uniform Heat Flux Boundary Conditions
,”
Exp. Therm. Fluid Sci.
,
22
(
3–4
), pp.
123
131
.10.1016/S0894-1777(00)00018-2
21.
Dakos
,
T.
,
Verriopoulos
,
C. A.
, and
Gibson
,
M. M.
,
1984
, “
Turbulent Flow With Heat Transfer in Plane and Curved Wall Jets
,”
J. Fluid Mech.
,
145
(
1
), pp.
339
360
.10.1017/S0022112084002950
22.
Naqavi
,
I. Z.
,
Tyacke
,
J. C.
, and
Tucker
,
P. G.
,
2017
, “
A Numerical Study of a Plane Wall Jet With Heat Transfer
,”
Int. J. Heat Fluid Flow
,
63
, pp.
99
107
.10.1016/j.ijheatfluidflow.2016.07.012
23.
Puzu
,
N.
,
Prasertsan
,
S.
, and
Nuntadusit
,
C.
,
2019
, “
Heat Transfer Enhancement and Flow Characteristics of Vortex Generating Jet on Flat Plate With Turbulent Boundary Layer
,”
Appl. Therm. Eng.
,
148
, pp.
196
207
.10.1016/j.applthermaleng.2018.11.035
24.
Perry
,
K. P.
,
1953
, “
Heat Transfer by Convection From a Hot Gas Jet to a Plane Surface
,”
Proceedings of the Institution of Mechanical Engineers
,
186
(
1
), pp.
775
784
.10.1243/PIME_PROC_1954_168_071_02
25.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1965
, “
The Role of Turbulence in Determining the Heat-Transfer Characteristics of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
8
(
10
), pp.
1261
1272
.10.1016/0017-9310(65)90054-2
26.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1966
, “
Heat Transfer Characteristics of Impinging Two Dimensional Air Jets
,”
ASME J. Heat Transfer
,
88
(
1
), pp.
101
107
.10.1115/1.3691449
27.
Vlachopoulos
,
J.
, and
Tomich
,
J. F.
,
1971
, “
Heat Transfer From a Turbulent Hot Air Jet Impinging Normally on a Flat Plate
,”
Can. J. Chem. Eng.
,
49
(
4
), pp.
462
466
.10.1002/cjce.5450490406
28.
Hoch
,
J.
, and
Jiji
,
L. M.
,
1981
, “
Theoretical and Experimental Temperature Distribution in Two-Dimensional Turbulent Jet-Boundary Interaction
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
331
336
.10.1115/1.3244462
29.
Striegl
,
S. A.
, and
Diller
,
T. E.
,
1984
, “
The Effect of Entrainment Temperature on Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
106
(
1
), pp.
27
33
.10.1115/1.3246655
30.
Pelfrey
,
J. R. R.
, and
Liburdy
,
J. A.
,
1986
, “
Effect of Curvature on the Turbulence of a Two-Dimensional Jet
,”
Exp. Fluids
,
4
(
3
), pp.
143
149
.10.1007/BF00280264
31.
Holland
,
J. T.
, and
Liburdy
,
J. A.
,
1990
, “
Measurements of the Thermal Characteristics of Heated Offset Jets
,”
Int. J. Heat Mass Transfer
,
33
(
1
), pp.
69
78
.10.1016/0017-9310(90)90142-H
32.
Song
,
H. B.
,
Yoon
,
S. H.
, and
Lee
,
D. H.
,
2000
, “
Flow and Heat Transfer Characteristics of a Two-Dimensional Oblique Wall Attaching Offset Jet
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2395
2404
.10.1016/S0017-9310(99)00312-9
33.
Vishnuvardhanarao
,
E.
, and
Das
,
M. K.
,
2007
, “
Computation of Mean Flow and Thermal Characteristics of Incompressible Turbulent Offset Jet Flows
,”
Numer. Heat Transfer, Part A
,
53
(
8
), pp.
843
869
.10.1080/10407780701715760
34.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2013
, “
Comparison of Two Low Reynolds Number Turbulence Models for Fluid Flow Study of Wall Bounded Jets
,”
Int. J. Heat Mass Transfer
,
61
, pp.
365
380
.10.1016/j.ijheatmasstransfer.2013.01.062
35.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2016
, “
Effect of Freestream Motion on Heat Transfer Characteristics of Turbulent Offset Jet
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
, p.
011021
.10.1115/1.4031524
36.
Nasr
,
A.
, and
Lai
,
J. C. S.
,
1997
, “
Comparison of Flow Characteristics in the Near Field of Two Parallel Plane Jets and an Offset Jet
,”
Phys. Fluids
,
9
(
10
), pp.
2919
2931
.10.1063/1.869404
37.
Anderson
,
E. A.
, and
Spall
,
R. E.
,
2001
, “
Experimental and Numerical Investigation of Two-Dimensional Parallel Jets
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
401
406
.10.1115/1.1363701
38.
Anderson
,
E. A.
,
Snyder
,
D. O.
, and
Christensen
,
J.
,
2003
, “
Periodic Flow Between Low Aspect Ratio Parallel Jets
,”
ASME J. Fluids Eng.
,
125
(
2
), pp.
389
392
.10.1115/1.1537257
39.
Aleyasin
,
S. S.
, and
Tachie
,
M. F.
,
2019
, “
Statistical Properties and Structural Analysis of Three-Dimensional Twin Round Jets Due to Variation in Reynolds Number
,”
Int. J. Heat Fluid Flow
,
76
, pp.
215
230
.10.1016/j.ijheatfluidflow.2018.12.001
40.
Li
,
H.
,
Anand
,
N. K.
,
Hassan
,
Y. A.
, and
Nguyen
,
T.
,
2019
, “
Large Eddy Simulations of the Turbulent Flows of Twin Parallel Jets
,”
Int. J. Heat Mass Transfer
,
129
, pp.
1263
1273
.10.1016/j.ijheatmasstransfer.2018.10.069
41.
Bentarzi
,
F.
,
Mataoui
,
A.
, and
Rebay
,
M.
,
2019
, “
Effect of Inclination of Twin Impinging Turbulent Jets on Flow and Heat Transfer Characteristics
,”
Int. J. Therm. Sci.
,
137
, pp.
490
499
.10.1016/j.ijthermalsci.2018.12.021
42.
Laban
,
A.
,
Aleyasin
,
S. S.
,
Tachie
,
M. F.
, and
Koupriyanov
,
M.
,
2019
, “
Experimental Investigation of Nozzle Spacing Effects on Characteristics of Round Twin Free Jets
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071201
.10.1115/1.4041989
43.
Oskouie
,
R. N.
,
Tachie
,
M. F.
, and
Wang
,
B. C.
,
2019
, “
Effect of Nozzle Spacing on Turbulent Interaction of Low-Aspect-Ratio Twin Rectangular Jets, Flow
,”
Turbul. Combust.
,
103
, pp.
323
344
.10.1007/s10494-019-00023-1
44.
Zhiwei
,
L.
, and
Wenxin
,
H.
, and
Jie
,
H.
,
2011
, “
Large Eddy Simulation of the Interaction Between Wall Jet and Offset Jet
,”
J. Hydrodyn.
,
23
(
5
), pp.
544
553
.10.1016/S1001-6058(10)60148-5
45.
Zhiwei
,
L.
,
Wenxin
,
H.
, and
Zhonghua
,
Y.
,
2012
, “
Interaction Between Wall Jet and Offset Jet With Different Velocity and Offset Ratio
,”
Procedia Eng.
,
28
, pp.
49
54
.10.1016/j.proeng.2012.01.681
46.
Kumar
,
A.
,
2015
, “
Mean Flow Characteristics of a Turbulent Dual Jet Consisting of a Plane Wall Jet and a Parallel Offset Jet
,”
Comput. Fluids
,
114
, pp.
48
65
.10.1016/j.compfluid.2015.02.017
47.
Mondal
,
T.
,
Guha
,
A.
, and
Das
,
M. K.
,
2015
, “
Computational Study of Periodically Unsteady Interaction Between a Wall Jet and an Offset Jet for Various Velocity Ratios
,”
Comput. Fluids
,
123
, pp.
146
161
.10.1016/j.compfluid.2015.09.015
48.
Essel
,
E. E.
, and
Tachie
,
M. F.
,
2018
, “
Submerged Turbulent Twin Jets Interacting With a Free Surface and a Solid Wall
,”
Int. J. Heat Fluid Flow
,
71
, pp.
27
38
.10.1016/j.ijheatfluidflow.2018.03.004
49.
Vishnuvardhanarao
,
E.
, and
Das
,
M. K.
,
2009
, “
Study of the Heat Transfer Characteristics in a Turbulent Combined Wall and Offset Jet Flows
,”
Int. J. Therm. Sci.
,
48
(
10
), pp.
1949
1959
.10.1016/j.ijthermalsci.2009.02.020
50.
Hnaien
,
N.
,
Marzouk
,
S.
,
Aissia
,
H. B.
, and
Jay
,
J.
,
2018
, “
Numerical Investigation of Velocity Ratio Effect in Combined Wall and Offset Jet Flows
,”
J. Hydrodyn.
,
30
(
6
), pp.
1105
1781
.10.1007/s42241-018-0136-0
51.
Assoudi
,
A.
,
Said
,
N. M.
,
Bournot
,
H.
, and
Palec
,
G. L.
,
2019
, “
Comparative Study of Flow Characteristics of a Single Offset Jet and a Turbulent Dual Jet
,”
Heat Mass Transfer
,
55
(
4
), pp.
1109
1123
.10.1007/s00231-018-2493-1
52.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
53.
Biswas
,
G.
, and
Eswaran
,
V.
,
2002
, “
Turbulent Flows
,”
Fundamentals, Experiments and Modeling
,
Narosa Publishing House
,
New Delhi, India
.
54.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
55.
Stone
,
G. L.
,
1968
, “
Iterative Solution of Implicit Approximation of Multidimensional Partial Differential Equations
,”
SIAM J. Numer. Anal.
,
5
(
3
), pp.
530
558
.10.1137/0705044
56.
Celik
,
B. I.
,
Ghia
,
U.
,
Roache
,
J. P.
,
Freitas
,
J. C.
,
Coleman
,
H.
, and
Raad
,
E. P.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
57.
Webb
,
R. L.
, and
Eckert
,
E. R. G.
,
1972
, “
Application of Rough Surfaces to Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
15
(
9
), pp.
1647
1658
.10.1016/0017-9310(72)90095-6
You do not currently have access to this content.