Abstract

Lots of generalized heat conduction models have been developed in recent decades, such as local thermal nonequilibrium model, phase lagging model, and nonlocal heat conduction model. But no attempt was made to prove which model is better (or worse) than others, or whether there is a certain relationship between these different models. With this inspiration, we establish the nonlocal bioheat transfer equations with lagging time, and the two and three-temperature bioheat transfer equations with considering all the carrier's heat conduction effect are also constructed. Comparing the two (or three)-temperature equation model with the nonlocal bioheat transfer models with lagging time, one may obtain: the lagging time of temperature gradient τtand the nonlocal characteristic length λq in the space derivative items of heat flux have the same effect on heat transfer; when the heat transport occur among N energy carriers with considering the conduction effects of all carries, the heat transfer processes are dependent upon the high-order effect of τqN-1, τtN-1 and λt(2N-1) in nonlocal dual phase lag bioheat transfer model. This phenomenon is very important for biological and medical systems where numerous carriers may exist on the cellular level.

References

1.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
2.
Luikov
,
A. V.
,
1968
,
Analytical Heat Diffusion Theory
,
Academic Press
,
New York
.
3.
Braznikov
,
A. M.
,
Karpychev
,
V. A.
, and
Luikova
,
A. V.
,
1975
, “
One Engineering Method of Calculating Heat Conduction Process
,”
Inzh. Fiz. Zh.
,
28
(
4
), pp.
677
680
.
4.
Kaminski
,
W.
,
1990
, “
Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
555
560
.10.1115/1.2910422
5.
Mitra
,
K.
,
Kumar
,
S.
,
Vedevarz
,
A.
, and
Moallemi
,
M. K.
,
1995
, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer
,
117
(
3
), pp.
568
573
.10.1115/1.2822615
6.
Roetzel
,
W.
,
Putra
,
N.
, and
Das
,
S. K.
,
2003
, “
Experiment and Analysis for Non-Fourier Conduction in Materials With Non-Homogeneous Inner Structure
,”
Int. J. Therm. Sci.
,
42
(
6
), pp.
541
552
.10.1016/S1290-0729(03)00020-6
7.
Liu
,
J.
,
Ren
,
Z. P.
, and
Wang
,
C. C.
,
1995
, “
Interpretation of Living Tissue's Temperature Oscillations by Thermal Wave Theory
,”
Chin. Sci. Bull.
,
17
, pp.
1493
1495
.http://www.cnki.com.cn/Article/CJFDTotal-JXTW199517021.htm
8.
Cattaneo
,
C.
,
1958
, “
A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation
,”
C. R.
,
247
(
4
), pp.
431
433
.https://www.mendeley.com/catalogue/521cde91-5974-39b3-948e-7f46a9c34569/
9.
Vernotte
,
P.
,
1958
, “
Les Paradoxes de la Théorie Continue de Léquation de la Chaleur
,”
C. R. Hebd. Acad. Sci.
,
246
(
22
), pp.
3154
3155
.https://www.researchgate.net/publication/259149681_Les_Paradoxes_de_la_Theorie_Continue_de_l%27equation_De_La_Chaleur
10.
Liu
,
J.
,
Chen
,
X.
, and
Xu
,
L. X.
,
1999
, “
New Thermal Wave Aspects on Burn Evaluation of Skin Subjected to Instantaneous Heating
,”
IEEE Trans. Biomed. Eng.
,
46
(
4
), pp.
420
428
.10.1109/10.752939
11.
Ahmadikia
,
H.
,
Fazlali
,
R.
, and
Moradi
,
A.
,
2012
, “
Analytical Solution of the Parabolic and Hyperbolic Heat Transfer Equations With Constant and Transient Heat Flux Conditions on Skin Tissue
,”
Int. Commun. Heat Mass Transfer
,
39
(
1
), pp.
121
130
.10.1016/j.icheatmasstransfer.2011.09.016
12.
Fazlali
,
R.
, and
Ahmadikia
,
H.
,
2013
, “
Analytical Solution of Thermal Wave Models on Skin Tissue Under Arbitrary Periodic Boundary Conditions
,”
Int. J. Thermophys.
,
34
(
1
), pp.
139
159
.10.1007/s10765-013-1396-0
13.
Tzou
,
D. Y.
,
1995
, “
A Unified Field Approach for Heat Conduction From Micro-to Macro-Scales
,”
ASME J. Heat Transfer
,
117
(
1
), pp.
8
16
.10.1115/1.2822329
14.
Tzou
,
D. Y.
,
1995
, “
Experimental Support for the Lagging Behavior in Heat Propagation
,”
J. Thermophys. Heat Transfer
,
9
(
4
), pp.
686
693
.10.2514/3.725
15.
Antaki
,
P. J.
,
2005
, “
New Interpretation of Non-Fourier Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer
,
127
(
2
), pp.
189
193
.10.1115/1.1844540
16.
Xu
,
F.
,
Seffen
,
K. A.
, and
Lu
,
T. J.
,
2008
, “
Non-Fourier Analysis of Skin Biothermomechanics
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2237
2259
.10.1016/j.ijheatmasstransfer.2007.10.024
17.
Liu
,
K. C.
, and
Chen
,
H. T.
,
2009
, “
Analysis for the Dual-Phase-Lag Bio-Heat Transfer During Magnetic Hyperthermia Treatment
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1185
1192
.10.1016/j.ijheatmasstransfer.2008.08.025
18.
Askarizadeh
,
H.
, and
Ahmadikia
,
H.
,
2015
, “
Analytical Study on the Transient Heating of a Two-Dimensional Skin Tissue Using Parabolic and Hyperbolic Bioheat Transfer Equations
,”
Appl. Math. Model.
,
39
(
13
), pp.
3704
3720
.10.1016/j.apm.2014.12.003
19.
Li
,
X. Y.
,
Qin
,
Q. H.
, and
Tian
,
X. G.
,
2020
, “
Thermo-Viscoelastic Analysis of Biological Tissue During Hyperthermia Treatment
,”
Appl. Math. Model.
,
79
, pp.
881
895
.10.1016/j.apm.2019.11.007
20.
Eringen
,
A. C.
,
2002
,
Nonlocal Continuum Field Theories
,
Springer Science & Business Media
,
New York
.
21.
Tzou
,
D. Y.
,
1997
,
Macro-To Micro-Scale Heat Transfer: The Lagging Behavior. Abingdon
,
Taylor & Francis
,
UK
.
22.
Guyer
,
R. A.
, and
Krumhansl
,
J. A.
,
1966
, “
Solution of the Linearized Phonon Boltzman Equation
,”
Phys. Rev.
,
148
(
2
), pp.
766
778
.10.1103/PhysRev.148.766
23.
Luciani
,
J. F.
,
Mora
,
P.
, and
Bendib
,
A.
,
1985
, “
Magnetic Field and Nonlocal Transport in Laser-Created Plasmas
,”
Phys. Rev. Lett.
,
55
(
22
), pp.
2421
2424
.10.1103/PhysRevLett.55.2421
24.
Tzou
,
D. Y.
, and
Guo
,
Z. Y.
,
2010
, “
Nonlocal Behavior in Thermal Lagging
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1133
1137
.10.1016/j.ijthermalsci.2010.01.022
25.
Kumar
,
R.
,
Vashishth
,
A. K.
, and
Ghangas
,
S.
,
2019
, “
Nonlocal Heat Conduction Approach in a Bi-Layer Tissue During Magnetic Fluid Hyperthermia With Dual Phase Lag Model
,”
Bio-Med. Mater. Eng.
,
30
(
4
), pp.
387
402
.10.3233/BME-191061
26.
Khaled
,
A. R. A.
, and
Vafai
,
K.
,
2003
, “
The Role of Porous Media in Modeling Flow and Heat Transfer in Biological Tissues
,”
Int. J. Heat Mass Transfer
,
46
(
26
), pp.
4989
5003
.10.1016/S0017-9310(03)00301-6
27.
Roetzel
,
W.
, and
Xuan
,
Y. M.
,
1998
, “
Transient Response of the Human Limb to an External Stimulus
,”
Int. J. Heat Mass Transfer
,
41
(
1
), pp.
229
239
.10.1016/S0017-9310(96)00160-3
28.
Xuan
,
Y. M.
, and
Roetzel
,
W.
,
1997
, “
Bioheat Equation of the Human Thermal System
,”
Chem. Eng. Technol.
,
20
(
4
), pp.
268
276
.10.1002/ceat.270200407
29.
Xu
,
F.
,
Lu
,
T. J.
,
Seffen
,
K. A.
, and
Ng
,
E. Y. K.
,
2009
, “
Mathematical Modeling of Skin Bioheat Transfer
,”
ASME Appl. Mech. Rev.
,
62
, pp.
50801
50835
.10.1115/1.3124646
30.
Xu
,
F.
,
Wang
,
P. F.
,
Lin
,
M.
,
Lu
,
T. J.
, and
Ng
,
E. Y. K.
,
2010
, “
Quantifying the Underlying Mechanism of Skin Thermal Damage: A Review
,”
J. Mech. Med. Biol.
,
10
(
03
), pp.
373
400
.10.1142/S0219519410003459
31.
Liu
,
K. C.
, and
Wang
,
J. C.
,
2014
, “
Analysis of Thermal Damage to Laser Irradiated Tissue Based on the Dual-Phase-Lag Model
,”
Int. J. Heat Mass Transfer
,
70
, pp.
621
628
.10.1016/j.ijheatmasstransfer.2013.11.044
32.
Zhang
,
Y.
,
2009
, “
Generalized Dual-Phase Lag Bioheat Equations Based on Nonequilibrium Heat Transfer in Living Biological Tissues
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4829
4834
.10.1016/j.ijheatmasstransfer.2009.06.007
33.
Tzou
,
D. Y.
, and
Dai
,
W.
,
2009
, “
Thermal Lagging in Multi-Carrier Systems
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1206
1213
.10.1016/j.ijheatmasstransfer.2008.08.029
34.
Tzou
,
D. Y.
,
2012
, “
Lagging Behavior in Biological Systems
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051006
.10.1115/1.4005636
35.
Tzou
,
D. Y.
,
2011
, “
Nonlocal Behavior in Phonon Transport
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
475
481
.10.1016/j.ijheatmasstransfer.2010.09.022
36.
Mahjoob
,
S.
, and
Vafai
,
K.
,
2009
, “
Analytical Characterization of Heat Transport Through Biological Media Incorporating Hyperthermia Treatment
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1608
1618
.10.1016/j.ijheatmasstransfer.2008.07.038
37.
Yuan
,
P.
,
2009
, “
Numerical Analysis of an Equivalent Heat Transfer Coefficient in a Porous Model for Simulating a Biological Tissue in a Hyperthermia Therapy
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1734
1740
.10.1016/j.ijheatmasstransfer.2008.09.033
38.
He
,
L. W.
, and
Jin
,
Z. H.
,
2010
, “
A Local Thermal Nonequilibrium Poroelastic Theory for Fluid Saturated Porous Media
,”
J. Therm. Stresses
,
33
(
8
), pp.
799
813
.10.1080/01495739.2010.482358
39.
Li
,
X. Y.
,
Qin
,
Q. H.
, and
Tian
,
X. G.
,
2019
, “
Thermomechanical Response of Porous Biological Tissue Based on Local Thermal Non-Equilibrium
,”
J. Therm. Stresses
,
42
(
12
), pp.
1
18
.10.1080/01495739.2019.1660599
40.
Nakayama
,
A.
, and
Kuwahara
,
F.
,
2008
, “
A General Bioheat Transfer Model Based on the Theory of Porous Media
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3190
3199
.10.1016/j.ijheatmasstransfer.2007.05.030
41.
Bazett
,
H. C.
,
Mendelson
,
E. S.
,
Love
,
L.
, and
Libet
,
B.
,
1948
, “
Precooling of Blood in the Arteries, Effective Heat Capacity and Evaporative Cooling as Factors Modifying Cooling of the Extremities
,”
J. Appl. Physiol.
,
1
(
2
), pp.
169
182
.10.1152/jappl.1948.1.2.169
42.
Mitchell
,
J. W.
, and
Myers
,
G. E.
,
1968
, “
An Analytical Model of the Countercurrent Heat Exchange Phenomena
,”
Biophys. J.
,
8
(
8
), pp.
897
911
.10.1016/S0006-3495(68)86527-0
43.
Brancik
,
L.
,
1999
, “
Programs for Fast Numerical Inversion of Laplace Transforms in MATLAB Language Environment
,”
Proceedings of the Seventh Conference MATLAB '99
,
Prague, Czech Republic
, pp.
27
39
.https://www.researchgate.net/publication/285882324_Programs_for_fast_numerical_inversion_of_Laplace_transforms_in_MATLAB_language_environment
You do not currently have access to this content.